
Automationstechnik

Antriebs- und Steuerungstechnik

BAPS2
Programming Instructions

rho 3

101
Version

rho 3

BAPS2
Programming Instructions
1070 073 033-101 (92.06) GB

Reg. Nr. 16149-03

E 1992

by Robert Bosch GmbH,
All rights reserved, including applications for protective rights.

Reproduction or handing over to third parties are subject to our written permission.

Discretionary charge 45.– DM

1. BAPS2 Programming Instructions
1. 1. General 1.
1. 2. Mode of compiler operation 2.

2. Program structuring 4.
2. 1. Main program structure 5.
2. 1. 1. Declaration part 5.
2. 1. 2. Statement part 6.
2. 1. 3. Subroutine declaration 6.
2. 2. Program declaration 7.
2. 3. Main program call in the main program 8.
2. 4. Subroutine declaration 11.
2. 4. 1. Identification 11.
2. 4. 2. Subroutine call 12.
2. 5. Program run 13.
2. 5. 1. Nesting 14.

3. Movement statements
3. 1. Direct movement statements 17.
3. 1. 1. Movement instructions 18.
3. 1. 1. 1. MOVE 18.
3. 1. 1. 2. MOVE_REL 20.
3. 1. 1. 3. REF_PNT 22.
3. 1. 1. 4. Destination point designations 22.
3. 1. 2. Kinematic definition 23.
3. 1. 3. Interpolation mode 24.
3. 1. 3. 1. LINEAR interpolation mode 24.
3. 1. 3. 2. CIRCULAR interpolation mode 25.
3. 1. 3. 3. PTP interpolation mode 25.
3. 1. 3. 4. Statement-specific interpolation mode 26.
3. 1. 3. 5. Global interpolation mode 27.
3. 1. 4. Destinations 28.
3. 1. 5. Speed, acceleration and time 29.
3. 1. 5. 1. Speed 29.
3. 1. 5. 2. Speed override 32.
3. 1. 5. 3. Acceleration 33.
3. 1. 5. 4. Acceleration override 36.
3. 1. 5. 5. Time input, indirect speed programming 37.
3. 2. Statements influencing movement 38.
3. 2. 1. Belt synchronization 38.
3. 2. 1. 1. Programming belt synchronization 39.
3. 2. 2. Block transitions (SLOPE mode) 41.
3. 2. 2. 1. General 41.
3. 2. 2. 2. SLOPE mode activation 42.
3. 2. 2. 3. Changing acceleration and speed 45.
3. 2. 2. 4. Abort conditions 47.
3. 2. 2. 5. Interpolation mode change-over 48.
3. 2. 2. 6. Calling external subroutines 49.
3. 2. 2. 7. Slope mode and exact-position signal output 49.
3. 2. 2. 8. Transgression of axis limit values 50.
3. 2. 2. 9. Test system 50.
3. 2. 2. 10. Slope mode and machine parameters 51.
3. 2. 2. 11. Portability of BAPS2 programs 51.

4. Program flow statements
4. 1. Wait statement 53.
4. 1. 1. Dwell time 53.
4. 2. Waiting for a condition to occur 54.
4. 2. 1. Maximum wait time 56.
4. 3. Pause statement 58.
4. 4. HALT statement 59.
4. 5. Program part repetition 60.
4. 6. Jump statement 61.
4. 7. Conditional statement 63.

5. Variable declaration
5. 1. Variable names 68.
5. 2. Data types 69.
5. 2. 1. Simple data types 70.
5. 2. 1. 1. INTEGER 70.
5. 2. 1. 2. REAL 70.
5. 2. 1. 3. BINARY 70.
5. 2. 1. 4. CHAR 71.
5. 2. 2. Structured data types 72.
5. 2. 2. 1. POINT 72.
5. 2. 2. 2. JC_POINT 72.
5. 2. 2. 3. TEXT 73.
5. 2. 2. 4. ARRAY 73.
5. 2. 2. 5. SEMAPHORES 73.
5. 2. 2. 6. FILE 73.
5. 3. Declaration of variables 74.

6. Value assignment 75.

7. Arithmetic expressions 76.

8. Standard functions
8. 1. Sine function: SIN (rad) 78.
8. 2. Cosine function 78.
8. 3. Arc tangent function 79.
8. 4. Root function 79.
8. 5. Coordinate transformation 80.
8. 6. Absolute value 80.
8. 7. TRUNC 80.
8. 8. ORD 81.
8. 9. CHR 81.
8. 10. ROUND 81.
8. 11. End of file 82.

9. Point variables
9. 1. Identification of point variables 83.
9. 1. 1. Points and point file PNT 84.
9. 1. 2. Complete value assignment 85.
9. 2. Assignment of numeric values 85.
9. 3. Assignment of variables for individual components 85.
9. 3. 2. Assignment with multiplication and division 86.
9. 3. 3. Mixed operation with point variables 87.
9. 3. 4. Reading the actual position POS 87.
9. 3. 5. Component-by-component assignment 88.

10. Text variable
10. 1. Text assignment 89.
10. 2. Variable use 89.

11. Arrays
11. 1. Array declaration 90.
11. 2. Value assignment for ARRAY variables 91.

12. Comparison 93.

13. Logic operations
13. 1. Combination of conditions 94.
13. 2. Negation of conditions 95.

14. Channels
14. 1. Channel declaration 96.
14. 2. Data types 97.
14. 3. Programming 98.
14. 3. 1. Interrogation of channels and signals 98.
14. 3. 2. Setting signals 99.

15. Analog inputs/outputs
15. 1. Analog inputs 100.
15. 1. 1. Hardware configuration Inputs 101.
15. 1. 2. Assignment of input channel numbers 101.
15. 1. 3. Nominal value definition inputs 102.
15. 1. 4. Value ranges: Analog inputs 102.
15. 2. Analog outputs 103.
15. 2. 1. Assignment of channel numbers (outputs) 104.
15. 2. 2. Nominal value definition (outputs) 104.
15. 2. 3. Fixation of the voltage offset 105.
15. 2. 4. value range: Analog outputs 106.
15. 3. Declaration of analog input and output channels 107.
15. 5. Restrictions 108.

16. Special functions
16. 1. Declaration of special functions 109.
16. 2. Calling special functions 109.
16. 3. Exact-position signal output for travel 110.
16. 3. 1. Declaration of special function 1 111.
16. 3. 2. Declaration of special function 2 112.
16. 3. 3. Function parameters 113.
16. 3. 3. 1. Special function call 116.
16. 3. 4. Special function call with variables 117.
16. 3. 5. Effect of the control value 117.
16. 3. 6. Preventing a process parameter change 117.
16. 3. 7. Error messages 118.
16. 3. 8. Calculation of the actual output position 119.
16. 3. 10. Error messages 121.
16. 4. Special function 23 System date and time 122.
16. 5. Special function 24 System counter 122.
16. 6. Special function 27 123.

17. Communication functions 124.
17. 1. Protocol selection for communication functions 125.
17. 2. The BAPS instruction WRITE 125.
17. 3. Interfaces 126.
17. 3. 1. Transferred data 127.
17. 4. The BAPS instruction READ 129.
17. 4. 1. Interfaces 129.
17. 4. 2. Transferred data 130.
17. 5. Example: READ/WRITE 131.

 18. File operations
18. 1. General 133.
18. 2. The DAT file 133.
18. 2. 1. Rules for DAT files 134.
18. 2. 2. Access to a DAT file 135.
18. 3. DAT file declaration(s) 135.
18. 4. The file Read statement. 135.
18. 5. Selection of a value within the DAT file 136.
18. 6. READ_BEGIN selection of a certain line 136.
18. 7. The BAPS standard function END_OF_FILE 137.
18. 8. The BAPS instruction WRITE 137.
18. 9. WRITE_BEGIN Selection of a certain line 138.
18. 10. The BAPS instruction WRITE_END 139.
18. 11. The BAPS instruction CLOSE 139.

19. Compound statements 141.

20. Parallel processes
20. 1. External processes 142.
20. 1. 1. Starting and stopping external processes 142.
20. 2. Internal processes 143.
20. 3. Semaphores 144.

21. Compiler statements
21. 1. Kinematic definition 145.
21. 2. Coordinate (WC) name definition 146.
21. 3. Axis (JC) name definition 147.
21. 4. Kinematic-related statements and data 148.
21. 5. Inclusion of files 149.
21. 6. Process kind 150.
21. 7. Test information 151.

22. Tool change 153.
22. 1. Format of the file TOOL.DAT 155.
22. 2. Tool selection in the movement program 157.

23. B A P S 2 - K E Y W O R D S 161.
23. 1. B A P S - COMPILER STATEMENTS 163.
23. 2. B A P S - STANDARD VARIABLES 164.
23. 3. B A P S - STANDARD FUNCTIONS 165.
23. 4. B A P S - STANDARD CONSTANTS 166.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 1

1. BAPS2 Programming Instructions

This manual describes the robot programming
language BAPS2.

It is directed at all those who use or are re�
sponsible for planning use of a Bosch rho3
control.

These programming instructions assume basic
knowledge of programming languages as well
as knowledge of how the rho3 control func�
tions. This knowledge can be gained, for
example, by attending the training courses of�
fered by Bosch.

The relevant safety regulations must be ob�
served when realizing the work task in
question.

1. 1. General

BAPS2 is a task-oriented higher-level pro�
gramming language for programming the rho
3 control family. BAPS2 is the further develop�
ment of the programming language BAPS and
stands for motion and sequence programming
language.

As a task-oriented programming language for
robot and handling systems, BAPS2 is an ex�
tensive but easy-to-learn language. It allows
quick and maintenance-friendly realization of
user tasks.

The language commands can currently be
written in either German or English.

The general syntax of each statement is given
before every detailed statement description in
this document.

The following symbols are used for the pur�
pose of description:

Bold means part of the language element and
must be written,

| alternative,

{ } may be optionally specified several times,

[] may be optionally specified once,

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 2

1. 2. Mode of compiler operation

The BAPS2 compiler is integrated both in the
operating system of the rho 3 control and in
the offline programming system ROPS3/IQpro
.

The BAPS2 compiler generates the following
files from the statements in the source fi�
le(QLL):

IRD file

This file contains the program code which the
rho 3 control executes and the memory area
required for the variables used in the program.
This file is generated only if the program has
been compiled without errors.

Memory space is also reserved in
this file for point variables which
are not declared with DEF and to
which a value is assigned in the
program.

PKT file

The memory area in this file is reserved for the
point variables which are declared in the pro�
gram with DEF or which are not declared and
to which no value is assigned in the program.

SYM file

This file contains information on the variable
names used in the program and is always re�
quired for testing BAPS2 programs.

ERR file

This contains the errors detected during
compilation of the BAPS2 program in plain
text.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 3

Flow chart for input and execution of a
program with the PHG (hand-held pro�
grammer)

Switch on rho 3.

Travel to reference points if necessary.

Select EDIT in PROGRAMMING level and enter

Using the command for EXIT, return to

Convert program to IRDATA code with COMPILE.

Subsequently define undefined positions with

Using the command <-, return to the

Deactivate PHG.

Start (or corresponding interface signal)

In the event of errors

wait until the version information appears on the

Select program (PROCESS) in the working levels
PROGRAM SELECTION.

PHG at the control cabinet.

programm

programming level.

DEFINE.

PROGRAMMING level.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 4

2. Program structuring

Programs are stored in files which are stored
in the main memory of the control or on a data
medium of your programming system. The
program files are identified with names to per�
mit location of the correct program from
among the large number of programs. These
files are also referred to as source files and
must be identified with the file label (extension)
QLL.

The program name and the name of the file in
which the program is stored must be identical.

In the rho 3 control, a distinction is made be�
tween main programs and subroutines. Main
programs are programs which exist as files
and which can be started as a rho 3 BAPS
user process. It is possible to call other main
programs which exist in the control's main
memory from within a main program. We then
speak of external subroutines; these must be
declared correspondingly in the declaration
part. Also refer to Chapter 2.3 External main
program and subroutine declaration.

Internal subroutines are part of the main pro�
gram in which they are defined and can be
called only from within this program.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 5

2. 1. Main program structure

Each main program consists of:

F Declaration part,

F Statement part and optionally

F Subroutine declaration(s).

2. 1. 1. Declaration part

The declaration part is located at the start of
the main program. The names which occur in
the main program are stated in the declaration
part.

This relates to the following:
F Program header, the name of the main

program
F External declaration, the names of the

external main programs called in the
main program,

F Channel declaration, the names of the
input and output channels used in the
program,

F Type declaration, the names of the vari�
ables which occur in the program.

The declaration part must be separated from
the statement part by the keyword "BEGIN".

Undeclared variabls are assumed
to be variables of the type POINT
or JC_POINT.

Main program

Declarations

Statements

Subroutines

Program
header
External
declaration

Channel
declaration

Type
declaration

PROGRAM SAMPLE

EXTERNAL: demo,help

INPUT: 1=force

OUTPUT: 9=rol_ba

REAL: weight, length

Point: pallet,chute

.

.

.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 6

2. 1. 2. Statement part

The statements which are to be executed are
programmed in the statement part. These in�
clude, for example:
F Motion statements,
F Deceleration values and halt,
F Main program calls,
F Subroutine calls,
F Program part repetitions,
F Program jumps,
F Arithmetic operations,
F .
F .
F .

The statement part is located between the key�
words:

"BEGIN" and "PROGRAM_END".

2. 1. 3. Subroutine declaration

Any subroutines are listed at the end of the
main program.

BEGIN

PROGRAM_END

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 7

2. 2. Program declaration

A main program is identified at the start by the
BAPS -word PROGRAM and its program
name.

The program name consists of a maximum of
eight characters.
Letters, digits and underlines are permitted.
The first character must be a letter. Upper-
case and lower-case letters are deemed
equivalent.

The program end is identified by the BAPS
word PROGRAM_END or SUB_END, if sub�
routines are listed.

The program name and file name
must be identical!

Example: It is wished to give a program the
name �demo":

End of program demo:

PROGRAM demo

PROGRAM_END

Main program
begin

Main program
end

File
DEMO.QLL

. .

PROGRAM demo

PROGRAM_END

BEGIN

Declarations

Statements

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 8

2. 3. Main program call in the main program

(External declaration)

A main program can consist of several external
individual main programs. The external main
programs must be declared after the start of
the declaration part by EXTERNAL and must
be present in the control as an IRD file when
called.

External main programs can be optionally pro�
vided with transfer parameters. The number,
order and data types must agree with the dec�
laration upon parameter transfer. All variables
are permitted as parameters except for vari�
ables of the types array and channels .

External main programs with transfer parame�
ters cannot be started as independent
programs but only by a program call from a
higher-order main program.

It is then sufficient to specify the declared pro�
gram name in order to call external programs
in the active main program.

The main program and the called
external program are compiled
independently of each other. No
check of the transferred parame�
ters with respect to agreement
with the declaration in the external
main program is thus possible at
the time of compilation.
This is performed during the pro�
gram run.
The number, types, order and na�
ture (VALUE or addressing) of the
transfer parameters must corre�
spond to the declaration of the
called external main program.

Declaration
of ext. MPs

Call of MP

Call of MP

PROGRAM demo

EXTERNAL: drill,course

drill

course

.

.

.

.

.

.

.

.

.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 9

Programming:

The program names of the external main pro�
grams are declared with the statement
EXTERNAL:e.g.

External declaration with parameter transfer:

The main program must be declared corre�
spondingly

PROGRAM WITHPAR (VALUE INTEGER : l)

EXTERNAL: drill, course

EXTERNAL: WITHPAR (VALUE INTEGER: I)

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 10

Main program call in the main program

Program run:
The control executes the active main program
up to the external program call, here �drill".

This is followed by a jump to the start of the
program drill.

The program drill is executed up to the HALT
statement.

HALT results in a return to the main program
demo.

The control continues the program run with the
statement following the call.

Active main program External main program

PROGRAM demo

EXTERNAL: drill

drill

MOVE pallet

.

.

.

.

.

.

PROGRAM drill

HALT

.

.

.

.

.

.

.

.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 11

2. 4. Subroutine declaration

If the same work steps have to be performed
at different points in the program, it is possible
to combine these steps in subroutines. Use of
subroutine programming techniques saves on
memory space and also increases the clarity of
your program. Variables which are defined in
the main program (global variables) can also
be processed in the subroutine. Variables
which are declared in the subroutine (local
variables) can be processed only in the sub�
routine. Transfer to the main program does not
take place! The subroutine declarations are
located after the main program after the HALT
or PROGRAM_END statement.

2. 4. 1. Identification

A subroutine is identified at the start by the
word SUBROUTINE and the subroutine name.
The subroutine name may consist of a maxi�
mum of 12 characters. Letters and digits are
permitted. The first character must be a letter.
Upper-case and lower-case letters are
deemed to be equivalent.
The subroutine is ended by the BAPS keyword
SUB_END. Return to the calling program takes
place with the BAPS command RETURN.

Programming:
A subroutine contains statements for the grip�
per and is to be given the name �gripper":

End of subroutine:

SUBROUTINE gripper

RETURN

SUB_END

Subroutine
start

Subroutine
end

HALT

PROGRAM_END

SUBROUTINE gripper

BEGIN

RETURN

SUB_END

.

.

.

.

.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 12

RETURN can be used several
times within a subroutine, e.g.
with program jumps and condi�
tional statements (see �Program
jump" and �Conditional state�
ment").

If the subroutine return is recognizable from
the program structure, e.g. at the subroutine
end, the compiler generates the command RE�
TURN automatically.

2. 4. 2. Subroutine call

It is sufficient to specify the declared subrou�
tine name for the subroutine call, e.g.

gripper

Subroutine
call

SUBROUTINE gripper

RETURN

SUB_END

.

.

.

INPUT : 106 = Finished

IF Finished THEN RETURN

gripper

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 13

2. 5. Program run

The control executes the main program up to a
subroutine call, here

�gripper"

This is followed by a jump to the start of the
subroutine gripper. The subroutine gripper is
executed up to RETURN.

RETURN results in a return to the main pro�
gram.

The control continues the program run with the
statement following the subroutine call.

It is possible to transfer variables or values with
a subroutine call. The variables must be corre�
spondingly declared in the subroutine
declaration for this purpose.

The value is transferred if the declaration is
made with the preceding BAPS instruction
VALUE, otherwise the address of the variable
is transferred, i.e. the variable must be de�
clared in the main program.

If the declaration is proceeded by VALUE, the
calling program transfers information (input) to
the called subroutine. However, the called sub�
routine does not return any information in this
way.

If the address is transferred, on the other
hand, the assignments in the subroutine also
act on this variable after return to the calling
program.

BEGIN

grip

HALT

PROGRAM_END

SUBROUTINE grip

RETURN

SUB_END

.

.

.

Example:

The variable force1 is assigned the value 1.5
and the variable force2 the value 6.0 in the
subroutine call.

Gripper (1.5,6.0)

SUBROUTINE grip (VALUE REAL: force1, force2

1 PROGRAM DEMO
2
3 ;***
4
5 ;TEST PROGRAM FOR SUBROUTINE WITH PARAMETER TRANSFER
6
7 ;THE SUBROUTINE "ANIX" PROCESSES THE VARIABLES IN THE SUBROUTINE,
8 ;THE VARIABLE IS UNCHANGED IN THE CALLING
9 ;PROGRAM AFTER LEAVING THE SUBROUTINE.

10
11 ; THE SUBROUTINE "AWAS" OFFSETS THE VARIABLES IN THE
12 ;SUBROUTINE AND THEN RETURNS THEM TO THE MAIN PROGRAM
13 AFTER COMPUTATION.
14 ;THE SUBROUTINE OUTPUTS THE FOLLOWING NUMBER SERIES:
15 ; 5
16 ; 10
17 ; 5
18 ; 10
19 ; 10
20
21 ;***
22
23 REAL:X
24 BEGIN
25 X=5
26
27 WRITE X
28 ANIX (X)
29 WRITE X
30 AWAS (X)
31 WRITE X
31
33 HOLD
34 PROGRAM_END
35
36 SUBROUTINE AWAS (REAL:AW)
37 BEGIN
38 AW=AW*2
39 WRITE AW
40 RETURN
41 SUB_END

42 SUBROUTINE ANIX (VALUE REAL:AW)
43 BEGIN
44 AW=AW*2
45 WRITE AW
46 RETURN
46
47 END

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 14

2. 5. 1. Nesting

Additional main program calls and subroutine
calls can be programmed within called main
programs or subroutines.

In these cases, we speak of nesting.

Program examples for subroutine nesting

Program run: A call of the program in the
�stacker" is programmed in the main program.

A further subroutine call is programmed in the
subroutine �stacker":

�gripper"

Program run: The control executes the main
program up to the call �stacker".

A jump then takes place to the subroutine
�stacker".

The control executes the subroutine �stacker"
up to the call �gripper".

This is followed by a jump to the next subrou�
tine �gripper".

The subroutine �gripper" is executed com�
pletely in the example shown here.

The control jumps back to the subroutine
�stacker" after the instruction RETURN, con�
tinues the program run up to RETURN and
then finally jumps back to the main program.

When programs and subroutines
are nested, it must be ensured
that no endless loops are created!

Any nesting depth is possible. The depth is
limited only by the available memory space.

The memory size can be defined
by a machine parameter (see rho3
- Description of machine parame�
ters P16)

Main program

Subroutine

Subroutine
SUBR. gripper

RETURN

.

.

.

SUBR. stacker

gripper

RETURN

.

.

.

.

stacker

HALT

.

.

.

.

.

.

.

.

.

.

.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 15

Program example for nesting program part
repetitions

Program part repetitions can also be nested;

A second repetition is programmed within a
program part repetition.

Program run: The control executes the pro�
gram part once up to the start of the second
program part.

The second program part is repeated three
times.

The control then continues the program run up
to the end of the first program part; the first
program part has thus been executed once.

The control then jumps back to the start of the
first program part for the second run.

The whole sequence is repeated a second
time.

Any nesting depth is possible. This is restricted
only by the size of the memory.

The memory size can be defined
by a machine parameter (see rho3
- Description of machine parame�
ters P16)

First
program
part

Second
program
part

RPT 2 TIMES

RPT 3 TIMES

RPT_END

RPT_END

.

.

.

.

.

.

RPT 2 TIMES

RPT 3 TIMES

RPT_END

RPT_END

.

.

.

.

.

.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 16

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 17

3. Movement statements

Robot movements are initiated by movement state�
ments.

Movement statements describe the movement of the
robot from a current position and orientation to a
destination point.

In the rho 3, a distinction is made between direct
movement statements and movement statements
which influence movement.

3. 1. Direct movement statements

A direct movement statement is made up of the follo�
wing individual statements:

F Movement instruction

F Kinematic definition

F Interpolation mode

F Speed/acceleration

F Abort condition

F Destination
The movement instruction and the destination must
always be programmed.

Information on the kinematic, interpolation mode,
speed/acceleration/time and abort conditions may
be omitted; the control then automatically uses inter�
nally stored statements for default values.

Movement statement

Movement Kinematic
definition

Interpo-
lation

MOVE LINEAR WITH

MOVE_REL

REF_PNT

CIRCULAR

PTP

VFIX_PTP

VFIX

A

V

VFACTOR

DFACTOR

AFACTOR

AFIX

T

TO

instruction

time

Abort
con-
dition

UNTIL

Speed,
acceler-
ation, ion

Destinat-

VIA

APPROX

EXACT

mode

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 18

3. 1. 1. Movement instructions

The control knows the following movement instruc�
tions:

F MOVE

F MOVE_REL

F REF_PNT

3. 1. 1. 1. MOVE

Syntax:
MOVE [Kinematic][Interpolation mode] [Additional info] [Abort condition] [TO] Point string |VIA Point string [TO
Point string]

The control interprets all position values programmed
after MOVE as absolute dimensions. The coordinate
values refer to the zero point of the world or joint
coordinate system.

X

Y

10

0
0

10

Destination

Destination = (10,10)

MOVE destination

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 19

Within the movement instruction, additional informa�
tion decides whether the robot approaches the
programmed points exactly - i.e. within the defined
tolerance - or whether it only travels past the points
- without halt -. This information consists of VIA
and TO for movements in absolute dimensions with
MOVE.

MOVE VIA...(pass over)

The robot travels past the positions without an inter�
mediate halt.

MOVE TO...

The robot travels to the positions successively with
an intermediate halt.

The word TO can be omitted when programming the
movement instruction. The control generates the in�
struction TO automatically.

It is possible to link VIA and TO within a movement
instruction:

MOVE VIA...TO...

The robot travels past position 1 without an inter�
mediate halt and then travels successively to
positions 2 and 3 with an intermediate halt in each
case.

X

Y

pos1

pos2

pos3

MOVE VIA pos1, pos2, pos3

VIA VIA
VIA

X

Y

pos1

pos2

pos3

MOVE TO pos1, pos2, pos3

TO TO

TO

X

Y

pos1

pos2

pos3

MOVE VIA pos1 TO pos2, pos3

VIA TO

TO

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 20

 3. 1. 1. 2. MOVE_REL

Syntax :
"MOVE_REL"[Kinematic_variable][Interpolation mode][Additional info] [Abort condition] (["EXACT"] Point
string | "APPROX" Point string ["EXACT" Point string])

The control interprets all position information pro�
grammed after MOVE_REL as incremental
dimensions. The coordinate values in this case repre�
sent distance values in the respective coordinate
system and refer to the current actual position of the
robot.

For movements in incremental dimensions
withMOVE_REL, the words APPROX and EXACT
decide with respect to exact positioning or travel
past:

MOVE_REL APPROX...

The robot travels past the positions defined in incre�
mental dimensions without an intermediate halt.

X

Y

10

10

Destination

Destination = (10,10)

MOVE_REL destination

X

Y

dis1

dis2

dis3

MOVE_REL APPROX dis1, dis2, dis3

APPROX APPROX

APPROX

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 21

MOVE_REL EXACT...

The robot travels to the positions defined in incre�
mental dimensions successively with an intermediate
halt in each case.

The word EXACT can be omitted when programming
the movement instruction. The control then gener�
ates the instruction automatically.

It is possible to link APPROX and EXACT within the
movement instruction:

MOVE_REL APPROX...EXACT...

The robot travels past the first position without an
intermediate halt and then travels successively to the
next positions 2 and 3 with an intermediate halt in
each case.

X

Y

dis1

dis2

dis3

MOVE_REL EXACT dis1, dis2, dis3

EXACT
EXACT

EXACT

X

Y

dis1

dis2

dis3

MOVE_REL APPROX dis1 EXACT dis2, dis3

APPROX
EXACT

EXACT

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 22

3. 1. 1. 3. REF_PNT

Syntax:

"REF_PNT" [Kinematic_variable] "(" Axis_number {|| ","}")"

REF_PNT is a special movement statement which is
used for programmed reference point travel of the
axes without having to manually travel the axes to the
reference point after a "system start-up". The ma�
chine axes which are to travel simultaneously to their
reference points are specified in brackets after the
REF_PNT statement.

The values in the bracket refer to the axis number of
the respective kinematic; the kinematic itself can be
specified before the bracket.

3. 1. 1. 4. Destination point designations

The designations of the points (position and orienta�
tion) can be freely selected (see "Point variables"). It
is thus possible to assign the names pallet1, pallet2
... to the pallet points, for example.

For simplicity's sake, point information in absolute
dimensions is designated by "pos" on the following
pages, e.g.MOVE pos.

Point information in incremental dimensions is desig�
nated by "dis" (distance information), e.g.
MOVE_REL dis.

REF_PNT KIN_1(1,2,3)

REF_PNT (4,5)

;;KINEMATIC = KIN_2

REF_PNT KIN_3(4,5)

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 23

3. 1. 2. Kinematic definition

If the program controls more than one kinematic, it is
necessary to specify which kinematic is to be moved
in the movement statement.

Only one kinematic definition must be
made in a movement statement.

If the kinematic is missing in the movement state�
ment, the kinematic stored in the operating system
or the last selected kinematic in the program is mo�
ved.

Kinematic preselection is performed using the com�
piler statement:

The kinematic defined in this way is then valid for all
subsequent movement statements without kinematic
definition.

It continues to be valid (in ascending line order) until
it is overwritten by another kinematic preselection.

The kinematic preselection refers to the
following line, not to the program se�
quence (subroutine call, jumps).

Kinematic names are defined using a compiler state�
ment (see Chapter: Defining kinematics).

MOVE sr60 TO corner

MOVE robot_2 VIA prepos TO home

;; KINEMATIC = Robot_2

MOVE VIA prepos TO home

;; KINEMATIC = Kinematic name

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 24

3. 1. 3. Interpolation mode

The control must know on which path the robot must
approach the next position. In order to define this
path, there are three

interpolation modes:

F LINEAR (= Straight line in space)

F CIRCULAR (= Circular path in space)

F PTP (Synchronous point-to-point, the path
depends on the robot design; synchronous
means that all axes reach their programmed
destination point at the same time)

3. 1. 3. 1. LINEAR interpolation mode

The robot travels to the destination point on a
straight line. The straight line is geometrically defined
by two points. Since the control knows the current
position P1 of the robot, it is sufficient to specify a
destination point P2.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 25

3. 1. 3. 2. CIRCULAR interpolation mode

The robot travels to the destination point on a circular
path in space. The circle is geometrically defined by
three points. In addition to the destination point PZ, it
is thus also necessary to specify an intermediate
point P2 so that the control can unambiguously
calculate the circular path; the point P1 is the last-
approached point and is known to the control. The
intermediate point P2 is a point on the arc which is
travelled by the robot.

The orientation of the intermediate point
(PZ) does not have any influence on the
movement sequence.

3. 1. 3. 3. PTP interpolation mode

The control calculates the movements of all axes so
that they simultaneously start and end movement.
This is generally also referred to as synchronous PTP.
This results in travel which is not further defined de�
pendent on the lever ratio of the robot arms and
points P1 and P2.

It is sufficient to specify a destination point for the
PTP interpolation method.

PZ

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 26

3. 1. 3. 4. Statement-specific interpolation mode

The interpolation mode is programmed in the move�
ment statement if a specific interpolation mode is to
be valid for one movement statement only.

The interpolation mode is contained in the movement
instruction, directly following MOVE or MOVE_REL.

There must be only one interpolation
mode within a movement function.

Example LINEAR:

Example CIRCULAR:

The point information (intermediate point pz or dz,
end position pos1 or dis1) required for CIRCULAR
interpolation must be written in brackets and separ�
ated by a comma.

Example PTP:

The control automatically selects PTP if
no interpolation mode is specified and if
no global interpolation mode has been
specified.

X

Y pos1

dis1

dis2

MOVE LINEAR TO pos1

MOVE_REL LINEAR APPROX dis1 EXACT dis2

LINEA
R

LINEA
R

X

Y pos1

dz

dis1

pz

MOVE CIRCULAR TO (pz,pos1)

MOVE_REL CIRCULAR EXACT (dz,dis1)

CIRCULAR

CIRCULAR

Y pos1

dis1

X

MOVE PTP TO pos1

MOVE_REL PTP EXACT dis1

PTP

PTP

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 27

3. 1. 3. 5. Global interpolation mode

If an interpolation mode is to be valid for several
movement statements, it can be specified as a global
interpolation mode.

The global interpolation mode is specified with the
compiler statement

;;INT = Interpolation mode.

The interpolation mode defined in this way then
applies to all subsequent movement statements
which do not contain any specific interpolation defini�
tions.

The robot travels to the position pos1 and the point
defined via dis1 on a straight line in each case. Travel
to point pos2, on the other hand, takes place on a
circular path.

The global interpolation mode remains valid until it is
replaced by another interpolation mode.

The robot travels to the positions pos1 and pos2 in a
straight line in each case.

The positions pos3 and pos4 and all other positions
are approached on a circular path after definition of
CIRCULAR interpolation mode.

In the case of global definition of CIR�
CULAR-interpolation, the point values
within the movement statement for
which the interpolation definition is to be
valid must be point pairs.

;; INT = LINEAR

MOVE pos1

MOVE_REL dis1

MOVE CIRCULAR (pz,pos2)

;; INT = LINEAR

MOVE pos1

MOVE pos2

;; INT = CIRCULAR

MOVE (pz1,pos3)

MOVE (pz2,pos4)

Example

.

.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 28

 If several global interpolation modes are
programmed, assignment of the interpo�
lation mode takes place in ascending
line order and not in accordance with
the program sequence (subroutine,
jumps etc.).

Example:

The position pos2 is approached with PTP, although
the compiler statement

;;INT = PTP

was skipped in the program run!

3. 1. 4. Destinations

The robot always travels from its current position to
the programmed destination point. The path for this
must be defined firstly by the interpolation mode, so
that the control knows how it is to calculate the path
to the destination point.

Secondly, the path must be defined unambiguously
in geometric terms. This is done by means of the
point values. In the case of circular interpolation, for
example, it is necessary to define an auxiliary point in
addition to the destination point in order to clearly
define the circular path.

Ascending
line order

Program sequence

1

2

3

4

5

6

;; INT = LINEAR

MOVE pos1

JUMP label1

;; INT = PTP

label1:

MOVE pos2

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 29

3. 1. 5. Speed, acceleration and time

In addition to informing the control of the position of
the destination point and the path, you must also tell
it how fast or in what time the robot should travel to
the destination point.

The control therefore requires information about the
duration of the movement or the path speed of the
robot.

A value can be entered for acceleration in order to
determine how quickly the robot is to reach this path
speed.

3. 1. 5. 1. Speed

The speed has different designations, units and input
ranges, depending on the path to be travelled by the
robot.

If you do not program any values for the speed, the
robot travels with speed values which are internally
stored in the control (25 mm/s for path interpolation
or 10% of the maximum speed for synchronous PTP
interpolation).

The speed V_PTP is specified as a decimal factor of
the maximum axis speed for synchronous PTP inter�
polation; it is also possible to enter values in percent.

e.g.

V_PTP = 80%

is equivalent to

V_PTP = 0.8

Speeds for
LINEAR and CIRCULAR interpolation:

Designation: V(Override active)
VFIX (Override not
active)

mm/s

1...2000 mm/s*
depending on machine

25 mm/s

Unit of measure:

Input range:

Power-on condition:

Speeds for
PTP:

Designation: V_PTP (Override active)
VFIX_PTP (Override
not active)

decimal factor

0.0001..9.9999

dependent on machine

(0.1)

Unit of measure:

Input range:

Power-on condition:

(0.01%..999.99%)

parameter P102

parameter P103

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 30

Programming possibilities

The speed can be programmed as a

F global speed definition,

F statement-specific speed definition,

F statement-specific time definition,

F with and without speed override.

Global speed definition

If the path speed remains the same for the whole
program or for a large section, it is sensible to define
the speed as a global speed.

 Programming:

V=Decimal expression

All subsequent movement functions with the interpo�
lation modes LINEAR and CIRCULAR have the
following speed value:

V = 750 mm/s.

The speed value remains valid until it is changed by
a further global speed input:

The speed for linear approach to the points pos1 and
pos2 is V = 750 mm/s. The points place3 and place4
and all other points are approached at a speed V =
300 mm/s.

Example:

V = 750

MOVE LINEAR pos1

MOVE CIRCULAR (pz,pe)

.

Example:

V = 750

MOVE LINEAR pos1

MOVE LINEAR pos2

V = 300

MOVE LINEAR place3

MOVE LINEAR place4

.

.

.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 31

Statement-specific speed definition

If the path speed is to be valid for only one move�
ment statement, the speed is correspondingly
defined as a statement-specific speed, i.e. with the
movement statement.

Programming:

The speed designation and value assignment are
part of the movement function for which the speed is
to be valid.

Programming takes place following the interpolation
mode with the key word WITH.

The global speed inputs do not have
any influence on statement-specific in�
puts!

Example: LINEAR

Example: PTP

MOVE_REL LINEAR WITH V=500 EXACT dis

MOVE PTP WITH V_PTP=70% TO pos

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 32

3. 1. 5. 2. Speed override

Speed and time values can be changed with the
speed override function VFACTOR.

The speed override factor is a factor by which the
control automatically multiplies all speed inputs.

Time inputs are divided by the VFACTOR. The values
calculated in this way then apply to the subsequent
movement functions.

Inputs with VFIX and TFIX are not taken
into account.

The factor relates to the defined speed or time values
in the program. The factor can also be specified in
percent, e.g.

VFACTOR = 180%

is equivalent to

VFACTOR = 1.8

AFACTOR and VFACTOR are reset to
1.0 (100%) with RESET and by program
abort.

The global VFactor (P23) acts on all kinematics, while
the local VFACTOR (P119) acts only on the respect�
ive kinematic.

Programming:

The designation and value assignment form a separ�
ate statement.

The VFACTOR of 180% (=factor 1.8) acts on the
path speed to the positions 1, 2, 3 and 4. Pos.1 is
approached at 180% of Vmax (power-on condition
10%, factor1.8);

 pos2 is approached at 360 mm/s;

 pos3 is approached at 180 mm/s;

 pos4 is approached in a time of 5.6 seconds

(10
1.8
+ 5.6).

Speed override

Designation: VFACTOR
Unit of measure: %
Input range: 0.01...999.99% *

* depending on machine parameter

 P23 and P119

Power-on condition: 1.0 (100%)

Example

VFACTOR = 180%

MOVE PTP TO pos1

V = 200

MOVE LINEAR TO pos2

MOVE LINEAR WITH V = 100 TO pos3

MOVE LINEAR WITH T = 10 TO pos4

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 33

3. 1. 5. 3. Acceleration

The control recognizes from the acceleration values
how quickly the robot has to reach the speed defined
for it.

Acceleration values can be programmed
only for LINEAR and CIRCULAR inter�
polation.

The designations, units of measure and input ranges
are contained in the adjacent table.

In the PTP method, the robot accelerates with the
maximum values defined in the machine parameters.
It is possible to change the acceleration value with
the AFACTOR.

Acceleration for
LINEAR and circular interpolation

Designation: A(override possible)
AFIX (override not
possible)

Unit of measure: mm/s2

Input range: 0.001...32000mm/s2

Power-on condition: 10mm/s2

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 34

Programming possibilities

In the case of LINEAR and CIRCULAR interpolation,
acceleration input is possible as a

F global definition,

F statement-specific definition,

F acceleration override.
The acceleration override factor is also active for PTP
interpolation.

Global acceleration definition

(Interpolation mode: LINEAR, CIRCULAR)

If the acceleration value remains the same for the
whole program or a large section of it, it sensible to
program a global acceleration value.

Programming: The designation and value assign�
ment form a separate statement at the beginning of
the program or program section.

The acceleration value remains valid until it is repla�
ced by another global value:

All subsequent movement functions with the interpo�
lation modes LINEAR and CIRCULAR have the value
A = 30 mm/s2 defined for acceleration.

The acceleration until the path speed V = 100 is re�
ached is as follows for travel to the points pos1 to
pos3

A = 30 mm/s2

The positions pos4, pos6 and all other positions with
LINEAR and CIRCULAR interpolation have an accel�
eration value of

A = 15 mm/s2

pos5 is approached with PTP interpola�
tion.
The acceleration value A=15mm/s2 is
not valid here!

A = 30

V = 100

MOVE CIRCULAR (pz,pos1)

MOVE LINEAR pos2

Example

A = 30

V = 100

MOVE CIRCULAR (pz,pos1)

MOVE LINEAR pos2

MOVE LINEAR pos3

A = 15

MOVE LINEAR pos4

MOVE PTP pos5

MOVE LINEAR pos6

.

.

.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 35

Statement-specific acceleration definition

The acceleration is defined as a local value if a path
acceleration value is to be active only within one
movement instruction.

Local acceleration values are possible
only for LINEAR and CIRCULAR interpo�
lation!

Programming: The designation and value assign�
ment are part of the movement function for which the
acceleration value is to be valid. Programming takes
place following the interpolation mode with the key
word WITH.

The global acceleration values do not
have any influence on statement-spe�
cific values!

It is possible to locally define the speed and acceler�
ation together within a movement function. The two
values are separated by a comma when program�
ming. They may be entered in any order.

Acceleration definition

Designation: A
Unit of measure: mm/s2

Input range: 0.001..32000
Power-on condition: 10 mm/s2

Example: LINEAR

Example:CIRCULAR

MOVE LINEAR WITH A=30 TO pos

MOVE_REL CIRCULAR WITH AFIX=25 EXACT

(dz,dis)

Example: CIRCULAR

MOVE_REL CIRCULAR WITH V=120, A=35

EXACT (dz,dis1)

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 36

3. 1. 5. 4. Acceleration override

Acceleration values can be influenced once more
with the acceleration override function (AFACTOR).
The acceleration override factor is a factor by which
the control automatically multiplies all acceleration
inputs. The values calculated in this way then apply
to all subsequent movement functions.

Example:

Programmed A = 300.00 mm/s2 and AFACTOR =
90% results in an active acceleration factor of

Active = A * AFACTOR => 270 mm/s2

The acceleration override function is not active for
programming with AFIX.

The adjacent table contains designations, units of
measure and input ranges.

The decimal factor refers to the predefined acceler�
ation values.

The factor can also be specified in %, e.g.

AFACTOR = 60%

is equivalent to

AFACTOR = 0.6

Programming: The designation and value assign�
ment form a complete BAPS2 statement.

The AFACTOR of 200% (= factor 2) acts on the path
acceleration for the movement to the points pos2
and pos3. The point pos4 is approached with the
fixed acceleration value AFIX = 10 [mm/s2]. The ac�
celeration override factor does not have any
influence here.

In the same way as the AFACTOR acts on the accel�
eration phase and can be programmed, the
DFACTOR is used analogously for the deceleration
phase of a movement.

Acceleration override

Designation: AFACTOR
Unit of measure: decimal factor
Input range: 0.01...999.99% *

* depending on the machine

parameter P22 and P118

Power-on condition: 100%

Example

AFACTOR = 200%

V = 200

MOVE PTP TO pos1

MOVE CIRCULAR TO (pz,pos2)

MOVE WITH A=80 TO pos3

MOVE WITH V=100 ,AFIX=10 TO pos4

Example

DFACTOR = 200%

V = 200

MOVE PTP TO pos1

MOVE CIRCULAR TO (pz,pos2)

MOVE WITH A=80 TO pos3

MOVE WITH V=100, DFIX=10 TO pos4

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 37

3. 1. 5. 5. Time input, indirect speed programming

If the robot must approach the next position within a
certain time, it is possible to define a time instead of
the speed.

Time inputs are possible only on a state�
ment-specific basis.

Programming: The time value is part of the move�
ment function for which it is to be valid.

The robot travels in a straight line in incremental di�
mensions. It has been allocated a time of 8 seconds
for the distance to be covered dis1.

The robot successively travels to the positions pos1,
pos2 and pos3 in a straight line with intermediate
halt in each case. It is allocated a time of 5 seconds
in each case to travel from position to position.

LINEAR

Designation: T (override active)
TFIX (override not
active)

Second

0.5...32000s

Unit of measure:

Input range:

Time for

dis1

MOVE_REL LINEAR WITH T=8 EXACT dis1

8 SEC.

pos1

pos2

pos3

MOVE LINEAR WITH T=5 TO pos1,pos2,pos3

5 SEC.

5 SEC.
5 SEC.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 38

3. 2. Statements influencing movement

In addition to the above-described direct movement
statements there are also the following statements
which have an influence on the movement se�
quences:

1 . Synchronization statements

SYNC, SYNCHRON, SYNCHRON_END

2. Acceleration, deceleration between

 movement statements

(block transitions)

BLOCK_SLOPE ,PROGR_SLOPE

3. 2. 1. Belt synchronization

The belt synchronization function allows the robot
movement to be synchronized with an assembly or
conveyor belt with respect to position and orienta�
tion.

It does not matter whether the belt travels forward or
backward, changes its speed or stops. The belt must
be a "straight line". This line may be arbitrarily posi�
tioned in space (see rho3 Description of machine
parameters P500). The belt movement is registered
by a position measuring system.

The statements SYNC, SYNCHRON and SYN�
CHRON_END are available in BAPS2 for function
programming.

Syntax:

SYNC Belt variable [, Variable] condition

SYNCHRON [Kinematic name] belt variable

SYNCHRON_END [Kinematic name] belt variable

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 39

The belt variable must be declared in the declaration
part of the program (also see Chapter Channel dec�
laration) and must be assigned to a kinematic.

Up to eight belts can be declared for a
kinematic. The belt names must be dif�
ferent. Equally, several kinematics can
use the same belt if the same channel
number is assigned to a belt variable
several times.

The component names and axis names must be
specified correspondingly for the assigned belt (see
Compiler statements, kinematic definition, and rho3
Description of machine parameters P300).

3. 2. 1. 1. Programming belt synchronization

The belt variable, which is of the data type REAL,
contains the counter value of the belt measuring sys�
tem. The belt variable can be interrogated only via
compare operations (=> and =<).

The belt variable can be used in the program with
WAIT UNTIL and SYNC.

The instruction SYNC sets the belt variable to zero.
Zeroing can take place dependent on a condition.
The adjacent example shows the possibilities of how
the SYNC instruction can be used.

Example

SR400.BELT : 501 = BELT1,502=BELT2

; Declaration of belt variables

SR401.BELT : 501 = BELT_1

; several belts for one kinematic

; same belt (501) for different kinematic

Example

;Belt variable in WAIT UNTIL

WAIT UNTIL BELT_1 => 60

Example

;Belt variable and SYNC statement

SYNC BELT_1 => 300

SYNC BELT_1 ,LI_BAR = 1

;Zeroing takes place if BELT_1 => 300

;Zeroing takes place dependent on a

;condition

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 40

Belt synchronization is switched on with the instruc�
tion SYNCHRON. From now on, all programmed
movements are synchronized with the belt with re�
spect to position and orientation.

The instruction SYNCHRON should
therefore directly follow the statement
SYNC. If this is not the case, a required
value may result owing to a belt move�
ment which the control then attempts to
compensate for the with the SYN�
CHRON statement. This may in turn
result in a jerky movement of the robot.

Synchronization is switched off with SYN�
CHRON_END.

Only LINEAR and CIRCULAR interpola�
tion must be programmed in belt
synchronization mode.

Example

;Belt variable and SYNCHRON statement

SYNCHRON SR400 BELT_1

MOVE LINEAR TO pos_1

SYNCHRON_END

Program example:

;; CONTROL = rho3
;; KINEMATIC : (1 = ROBI_1, 2 = ROBI_2) ; Definition of kinematic names
;; ROBI_1.JC_NAMES = A1,A2,A3,B1 ; B1 is a dummy for belt values
;; ROBI_1.WC_NAMES = K1,K2,K3,B_C1 ;
;; ROBI_2.JC_NAMES = A1,A2,A3,B2 ; B2 is a dummy for belt values
;; ROBI_2.WC_NAMES = K1,K2,K3,B_C2 ;

PROGRAM BELT_SYN

INPUT : 1=E1,2=E2
ROBI_2.POINT : START_POS
ROBI_1.BELT : 501=BELT1
ROBI_2.BELT : 502=BELT2

BEGIN

; Synchronization of kinematic ROBI_1 with BELT1

SYNC BELT1, E1=1
SYNCHRON ROBI_1 BELT1
MOVE ROBI_1 LINEAR TO ROBI_1.POS
WAIT UNTIL BELT1 >= 1000
SYNCHRON_END ROBI_1 BELT1

; Synchronization of kinematic ROBI_2 with BELT2

SYNC BELT2 >= 200
SYNCHRON ROBI_2 BELT2
MOVE ROBI_2 LINEAR TO START_POS
WAIT UNTIL E2=1
SYNCHRON_END ROBI_2 BELT2

PROGRAM_END

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 41

3. 2. 2. Block transitions (SLOPE mode)

Syntax:

BLOCK_SLOPE

PROGR_SLOPE

In the normal movement sequence, the controlled
axes are accelerated to the programmed speed with
every MOVE statement, traversed at the pro�
grammed speed and then decelerated again to
V = 0 when the programmed position is reached.
The speed change is referred to as the SLOPE. The
acceleration phase is thus known as the Up- slope
and the deceleration phase as the Down- slope.

The slope mode can be activated on a kinematic-
specific basis.

3. 2. 2. 1. General

If it is wished to execute several MOVE statements
coherently without changing the speed to V = 0
[mm/s] and accelerating to the programmed speed
(acceleration and deceleration phase), this can be
done by using the BAPS2 statement
PROGR_SLOPE. Switch-back to block-by-block
acceleration and deceleration is possible with
BLOCK_SLOPE.

If PROGR_SLOPE is activated, the block transitions
are executed at a constant required speed if no
speed changes are programmed. Otherwise, the re�
quired speed is changed in jump and/or ramp form.

v[mm/s]

t

UP-SLOPE

DOWN-SLOPE

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 42

3. 2. 2. 2. SLOPE mode activation

The slope mode can be switched in the BAPS pro�
gram. The two BAPS2 standard functions

BLOCK_SLOPE

and

PROGR_SLOPE

are defined for this purpose.

Program Slope mode is switched off after activation
of Block Slope mode by the BAPS2 statement

BLOCK_SLOPE.

The slope function is then active block-by-block.

Robot acceleration control:

The robot is accelerated at the start of every block in
accordance with the slope form (jump to slope point,
then start with defined acceleration) and is then de�
celerated again correspondingly at the end.

Also refer to "rho3 Description of machine parame�
ters" P120..P124 .

PROGR_SLOPE

The robot is accelerated by means of the slope func�
tion at the start of a coherent movement sequence
and is decelerated again at the end. The speed is
kept constant at block transitions if no speed change
is programmed.

The power-on condition is defined for each kinema�
tic via machine parameter (P120).

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 43

Programming of SLOPE mode is explained below in
several BAPS2 program examples and its effect on
the movement sequence shown in the following dia�
grams.

Example 1 :

Program slope mode is not active in the first part of
the program (blocks 7..9), i.e. the robot is acceler�
ated in each block with a=1000 mm/s2 and is
decelerated again at the end of the block (Figure 1).

Program slope mode is switched on in block 11. As a
result, the robot is accelerated with a=1000 mm/s2
in block 13. The block transitions from 13 to 14 and
14 to 15 are executed at constant speed.

The robot is decelerated with the programmed accel�
eration (1000 mm/s2) at the end of block 15 (Figure
2).

The deceleration operation is already initiated in the
previous block (block 14, Figure 3) if the traversing
distance in the MOVE TO block (block 15) is not suffi�
cient to decelerate the robot by means of the slope
function.

The speed is set to zero by way of a jump at the
end of block 15 if the sum of the distances from
block 14 and block 15 is not sufficient as the de�
celeration distance.

In this case, the following message is issued during
the run time "Decel. distance is too short, block No.:
15".

The acceleration phase may take place over any
number of blocks (example), blocks 17..21, Figure
3).

 1 PROGRAM BSP_1
 2 BEGIN
 3 ;;INT = LINEAR
 4
 5 V=800, A=1000
 6
 7 MOVE VIA START_POINT
 8 MOVE VIA POINT_CENTER
 9 MOVE TO END_POINT
10
11 PROGR_SLOPE
12
13 MOVE VIA START_POINT
14 MOVE VIA POINT_CENTER
15 MOVE TO END_POINT
16
17 MOVE VIA RAMP_1
18 MOVE VIA RAMP_2
19 MOVE VIA START_POINT
20 MOVE VIA POINT_CENTER
21 MOVE TO END_POINT
22
23 BLOCK_SLOPE
24
25 HALT
26 PROGRAM_END

Example 1:

B
lo

ck
 7

B
lo

ck
 8

B
lo

ck
 9

V[mm/s2]

t

AFACTOR = 1.0

Figure 1.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 44

B
lo

ck
 1

3

B
lo

ck
 1

4

B
lo

ck
 1

5

B
lo

ck
 1

7

B
lo

ck
 1

8

B
lo

ck
 1

9

B
lo

ck
 2

0

B
lo

ck
 2

1

V[mm/s2]

1000

t

AFACTOR = 1.0

Figure 2.

B
lo

ck
 1

3

B
lo

ck
 1

4

B
lo

ck
 1

5

B
lo

ck
 1

7

B
lo

ck
 1

8

B
lo

ck
 1

9

B
lo

ck
 2

0

B
lo

ck
 2

1

V[mm/s2]

1000

t

AFACTOR = 0.25

Figure 3.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 45

3. 2. 2. 3. Changing acceleration and speed

Acceleration change (A, AFACTOR)

As before, a change in the acceleration value is ef�
fective only at the time of block preparation; this is
also true for any change of the AFACTOR with the
PHG.
Also refer to "rho 3 PHG operation"

Speed changes (V, VFACTOR)

Speed changes programmed in BAPS2 such as

V = ... or MOVE WITH V = ...

act at the block transition.

Changes of VFACTOR with the PHG
(Mode 11.4) become active immediate�
ly.

All speed changes are implemented in accordance
with the slope function if the required speed is higher
than the slope point defined by way of machine para�
meter P105 or P106. All speed changes are
performed as jump functions below the slope point. If
the programmed speed is not reached in a MOVE
TO block, acceleration takes place only up to the
max. possible speed and is then followed by immedi�
ate deceleration again (see example 2, block 15).

Example 2:

 1 PROGRAM BSP_2
 2 BEGIN
 3 ;;INT = LINEAR
 4 PROGR_SLOPE
 5 A = 1000
 6
 7 MOVE WITH V = 200 VIA P1
 8 MOVE WITH V = 350 VIA P2
 9 MOVE WITH V = 500 VIA P3
10 V = 600
11 MOVE VIA P4,P5
12 MOVE VIA P6
13 V = 400
14 MOVE VIA P7
15 MOVE WITH V = 1000 TO P8
16
17 HALT
18 PROGRAM_END

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 46

Change in deceleration (DFACTOR)

It is possible to influence the deceleration in the
BAPS program by assigning a corresponding value
to the standard variable DFACTOR. Like the AFAC�
TOR, the DFACTOR is a percentage which refers to
the current deceleration of the respective block. A
change in the deceleration acts like a change in ac�
celeration at the time of block preparation. The
DFACTOR can also be changed by means of PHG.

Example 3.3:

 1 PROGRAM BSP_33
 2
 3 ;; INT = LINEAR
 4 BEGIN
 5 PROGR_SLOPE
 6
 7 A=1000
 8
 9 MOVE WITH V=200 VIA P1
10 MOVE WITH V=350 TO P2
11 DFACTOR = 0.5
12 MOVE WITH V=350 VIA P3
13 MOVE WITH V=200 TO P4
14 HALT
15 PROGRAM_END

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 47

3. 2. 2. 4. Abort conditions

Abort by external influences

An abort of a travel movement by external influences
(e.g.: Reset, Feed hold, Abort with MOVE UNTIL in�
struction) takes place as before, subject to the
following restriction:

If the remaining travel distance in the
currently active block is not sufficient to
decelerate the robot by way of the slope
function, the speed V = 0 is defined as a
jump function at the end point. Immedi�
ate deceleration (without slope function)
takes place in the event of an abort by
emergency-stop.

Abort of a coherent movement in the BAPS pro�
gram

A movement sequence (activated program slope) is
interrupted by the following BAPS instructions:

- WAIT

- PAUSE

- HALT

- BLOCK_SLOPE

- IF ... THEN ... ELSE

- REF_PNT

- WRITE

- READ

- Several blocks without travel infor-
 mation

(e.g.: calculations, variable assignments,
setting output signals)

The number of possible blocks depends on the
length of the preceding travel blocks and the nature
of the assignments or calculations performed.

Example 3:

 1 PROGRAM BSP_3
 2 BEGIN
 3 ;;INT = LINEAR
 4
 5 V=800, A=1000
 6
 7 PROGR_SLOPE
 8
 9 MOVE VIA START_POINT
10 WAIT 1
11 MOVE VIA POINT_CENTER
12 MOVE TO END_POINT
13 WAIT 1.5
14 MOVE VIA START_POINT
15 MOVE VIA POINT_CENTER TO END_ POINT
16
17 BLOCK_SLOPE
18
19 HALT
20 PROGRAM_END

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 48

If Program slope mode is active, the
movement must be ended in a defined
manner before the above-mentioned
statements by insertion of a MOVE TO
block. This initiates a controlled decele�
ration operation.

The speed is set to 0 in a jump function
in the event of an interruption after a
MOVE VIA block.

In this case, the following error message is addition�
ally output:

"Speed jump, block No. XX, <dana.IRD>"

(XX = Line number of the defective block,
<dana.IRD> = Name of the current program).

3. 2. 2. 5. Interpolation mode change-over

The global acceleration and deceleration behavior
can be activated independently of the interpolation
mode (linear interpolation, circular interpolation and
PTP mode). Block transitions without any change in
the interpolation mode are performed as described in
Item 2.

Change-over between linear and circular interpo�
lation

Block transitions are peformed as described in Point
2 for changes from linear to circular interpolation. Example 4:

 1 PROGRAM EXP_4
 2 BEGIN
 3 ;;INT = LINEAR
 4
 5 V=800, A=1000
 6
 7 PROGR_SLOPE
 8
 9 MOVE VIA START_POINT
10 MOVE CIRCULAR VIA (INT_POINT1,

CIRCULAR_END1)
11 MOVE CIRCULAR TO (INT_POINT2,

CIRCULAR_END2)
12 MOVE TO PNT_CENTER
13 MOVE CIRCULAR TO (INT_POINT3,

CIRCULAR_END3)
14
15 HALT
16 PROGRAM_END

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 49

Change-over between path and PTP modes

The movement sequence must be ended by a MOVE
TO block before change-over from path mode to
PTP mode and vice versa so that a controlled transi�
tion can be realized. If the change-over takes place
during a coherent movement, the speed is changed
in a jump function and the warning "Speed jump,
block No.: XX, <dana.IRD>" is output. No controlled
acceleration takes place in the first block in the new
interpolation mode (i.e.: jump to program speed). It
is thus possible to generate a transition without or
with only a slight change of the axis speeds by clever
programming.

3. 2. 2. 6. Calling external subroutines

The transition to an external subroutine can take
place within a coherent movement without a speed
dip.

A precondition is that program slope mode is acti�
vated at the start of the external subroutine with the
BAPS2 statement PROGR_SLOPE before the first
travel block or that program slope mode is preset by
machine parameter P120.

3. 2. 2. 7. Slope mode and exact-position signal output

The special functions 1 and 2 (see chapter "Special
functions) can be used fully for both program slope
and block slope modes.

Example 5:

 1 PROGRAM EXP_5
 2 BEGIN
 3 PROGR_SLOPE
 4
 5 V_PTP = 1
 6 MOVE PTP TO START_PNT
 7 MOVE LINEAR TO P1
 8 MOVE PTP VIA P2
 9 MOVE LINEAR VIA END_PNT
10 V_PTP = 0.5
11 MOVE PTP TO END_PNT_1
12 HALT
13 PROGRAM_END

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 50

3. 2. 2. 8. Transgression of axis limit values

Transgressions of the limit values of individual machi�
ne axes in path mode cannot be excluded as a result
of coordinate transformation. Only monitoring is
possible during the program run. This monitoring
function triggers one of the two following error mess�
ages in the event of an error:

 - Interpolator stop, axis X, block No.: XX,
<dana.IRD>

 - Max. acceleration exceeded, axis X, block
No: XX, <dana.IRD>

 X = Number of corresponding machine axis

 XX = Line number of defective block

 <dana.IRD> = Name of active program

The maximum permitted axis acceleration values are
defined as 1.5 times the value of the machine para�
meter P103. The programmer is thus made to
change the program at the corresponding places.
Automatic speed adaption is not possible, since this
would contradict the demand for constant path
speed.

3. 2. 2. 9. Test system

Since interrupt points can be set in the test system,
only BLOCK_SLOPE is active here, irrespective of the
programmed slope mode.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 51

3. 2. 2. 10. Slope mode and machine parameters

The slope behavior is determined by the following
machine parameters:

Slope acceleration PTP

Slope point, path mode

Power-on condition, SLOPE mode

SLOPE form

Also refer to "rho 3 Description of machine parame�
ters" parameter group P100.

3. 2. 2. 11. Portability of BAPS2 programs

BAPS2 programs are portable with respect to differ�
ent rho3 hardware configurations if the machine
parameters relevant for the functions PROGR_SLOPE
and BLOCK_SLOPE are set identically for the differ�
ent configurations. The SLOPE mode in power-on
condition in particular is important for program port�
ability.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 52

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 53

4. Program flow statements

4. 1. Wait statement

Syntax:

WAIT Expression

The WAIT statement allows programming of delays
and interruptions in program execution.

4. 1. 1. Dwell time

A time can be specified directly if the robot is to dwell
at a position for a specific time.

Programming: Time input takes place as a numeric
value following the statement WAIT, e.g.

Program example: The robot transports a vessel to
the metering unit to have it filled.

The filling time is approx. 8.5 seconds.

It then transports the vessel to a pallet.

WAIT 8.5

Dwell time for WAIT

Unit of measure: Second
Input range: 0.01...32000s

metering unit

MOVE TO met_unit

WAIT 8.5

Î Î

pallet

MOVE TO pallet

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 54

4. 2. Waiting for a condition to occur

Syntax:

WAIT UNTIL Variable Rel_Operator Expression [MAX_TIME = Expression [ERROR Statement]]

Rel_Operator = "=" | "<>" | "<=" | ">=" | "<" | ">"

If the robot is to wait for a condition to occur at a
position, the condition can be specified together with
the WAITstatement.

Program execution will then be interrupted until the
condition is satisfied.

The conditions can be set only by
means of input channel variables (also
see �Channel assignment").

Programming: The condition is appended to the
WAIT statement with the word UNTIL, e.g.

If the condition consists of several input
channels, the WAIT statement must be
divided up into several steps, e.g.

WAIT UNTIL pal_empty = 1

WAIT UNTIL signal = 1

WAIT UNTIL light = 1

MOVE TO pallet

.

.

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 55

Program example: The robot transports a workpiece
to a pallet changer.

It waits until the pallet is empty. The pallet changer
then outputs the signal pal_empty = 1 when an
empty pallet has arrived at the change position.

The deposit operation is programmed in a subroutine
put_down.

ÎÎ
ÎÎ

ÎÎ
ÎÎ

pallet

MOVE TO pallet

ÎÎ
ÎÎ

ÎÎ
Light barrier

pal_empty = 0

Pallet
movement

WAIT UNTIL pal_empty = 1

ÎÎ
ÎÎ

ÎÎ
ÎÎ

pal_empty =1

put_down

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 56

4. 2. 1. Maximum wait time

A maximum wait time can be defined in conjunction
with a wait condition.

Program execution will then be interrupted until the
condition is satisfied or the specified maximum time
is exceeded.

An error statement can be programmed with the
maximum wait time. The control executes the error
statement if the maximum wait time is exceeded.

Programming: The maximum wait time is specified
with the BAPS instruction MAX_TIME. This is pro�
grammed after the wait condition, e.g.

Program example:

An error statement is programmed after MAX_TIME,
e.g.

Maximum wait time

Designation: MAX_TIME
Unit of measure: Second
Input range: 0.5...32000

WAIT UNTIL sig=1 MAX_TIME= 60

WAIT UNTIL sig=1 MAX_TIME =60 ERROR P AUSE

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 57

Sequence example

A container is filled with a liquid. A sensor measures
the weight of the container. The sensor outputs the
signal weight = 1 when the container is full. The fil�
ling system then closes the valve, and the robot
transports the container away. The average filling
time is approx. 25 s.

The container may remain under the filling device for
a maximum of 45 seconds in order to ensure that the
production sequence is not put at risk.

Case 1

The container is completely filled. The sensor issues
the following signal to the rho:

Weight = 1

The robot transports the container away.

The MAX_TIME was not reached.

Case 2

The filling system is empty and the container is not
completely filled.

The MAX_TIME is reached. The program is con�
tinued at F_END, e.g. the robot isolates the partially
filled container.

WAIT UNTIL weight=1

MAX_TIME=45 ERROR JUMP F_END

F_END :

.

.

.

.; Error processing

Clock

rho

Sensor

Clock

rho

Sensor

weight=1

Clock

rho

Sensor

Weight=0

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 58

4. 3. Pause statement

Program execution can be stopped with the pause
statement

It is then necessary to issue the external start signal
again in order to continue the program run (see "rho
3 signal description").

Programming: The PAUSE statement consists of the
BAPS instruction PAUSE.

It is recommended to program a text output or to set
an output before the PAUSE instruction in order to
inform the operator about the program flow.

PAUSE

PAUSE

.

.

.

.

.

.

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 59

4. 4. HALT statement

The HALT statement ends execution of a statement
string in the main program.

The control recognizes that the program has been
terminated during the program run by way of the
HALT instruction.

In the case of called external subrou�
tines, HALT results in a return to the cal�
ling active main program.

Programming: The HALT instruction is entered before
the subroutine declaration or before the program end
or is entered several times within a program in the
case of branched programs:

If the program halt is evident from the program struc�
ture, e.g. in the case of the BAPS2 statement

PROGRAM_END,

the control then generates the HALT instruction auto�
matically during compilation.

HALT

BEGIN

PROGRAM demo

HALT

PROGRAM_END

SUBROUTINE GRIP

SUB_END

.

.

.

.

.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 60

4. 5. Program part repetition

Syntax:

RPT" [Expression "TIMES"] Statement string "RPT_END" .

A program part can be executed several times with a
repeat statement.

In this case, we speak of a program part repetition.

Identification

The program part is identified at the start

by the Repeat statement

RPT number TIMES.

Numbers, variables or expressions of the type IN�
TEGER (see Data types) can be entered for the num�
ber of repetitions.

The loop is not executed if number = 0 or if negative.

The program part is ended by the BAPS instruction
RPT_END.

Programming: A certain program part is to be ex�
ecuted 8 times.

End of the program part:

Start of the
program part to be

End of the
program part

repeated

RPT 8 TIMES

RPT_END

.

.

.

.

.

.

.

.

.

.

RPT 8 TIMES

RPT_END

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 61

4. 6. Jump statement

Labels can be set in main programs and subroutines
to which it is possible to jump with a jump statement.
Forward and back jumps are possible.

Identification

The jump statement consists of the BAPS instruction
JUMP and the name of the set jump label. The labels
(jump destinations) are identified with names.

The name consists of a maximum of 12 characters.

Letters and digits and the underline symbol are per�
mitted. The first character must be a letter. Upper-
case and lower-case letters are equivalent.

Setting of a jump label must be identified with a
colon (:) in order to distinguish this from subroutine
calls.

A specific jump label must be set only
once!
Any number of differently named jump
labels is possible.

Programming:

A jump to the jump label �Table" (forward) is to take
place in a program.

Jump statement for jump to jump label �Table"

Setting of the jump label with the name �Table"

JUMP TABLE

Table:

back

JUMP

forward

Jump statement

Jump label

JUMP table

Table:

.

.

.

.

.

.

.

.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 62

Program run

The control executes the program up to the jump
statement, here�JUMP table".

This is followed by a jump to the jump label �Table".

The control then continues the program from this
label.

Jumps from the main program into a
subroutine and vice versa are not per�
mitted!

Jumps to program part repetitions are
also not permitted.

Jumps from program part repetitions, on the other
hand, are permitted.

JUMP table

Table:

.

.

.

.

.

.

.

.

MAIN PROGRAM SUBROUTINE

SUB_END

JUMP

JUMP

MAIN PROGRAM

RPT

RPT_END

JUMP

yes!

no!

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 63

4. 7. Conditional statement

Syntax:

IF condition THEN statement [ELSE statement]

The remaining execution of the program can be
made to depend on a condition at freely selectable
locations within a main program or subroutine. The
statement dependent on the condition is therefore
also referred to as a conditional statement.

Condition: Condition is understood to mean an ex�
pression of the type BINARY.

The condition is satisfied if the statement is correct,
i.e. the variable actually possesses the value or has a
value within the specified value range.

The condition is not satisfied if the statement is false.

Example for conditions:

Channel = 1

i = 15

sig1 AND sig2

word = j

force > 115.0

torque >= threshold value

Conditions must be put in brackets if
necessary when combined with AND,
OR, NOT (see �Logic operations") in
order to obtain the desired priorities of
the condition operation.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 64

Programming

A conditional statement has the following form:

IF condition THEN statement1 ELSE statement2

If the condition is satisfied,
then the control executes statement 1,
else, if the condition is not satisfied, the control ex�
ecutes statement 2.

Possible statements are, for example:

F Program calls
(Main program or subroutine calls)

F Jump statements (JUMP)
F Pause statements (PAUSE)
F Halt statements (HALT)
F Delays (WAIT)
F Repetitions (RPT)
F Movement instructions

(MOVE, MOVE_REL)
F Conditional statements

(IF...THEN...ELSE)
F .
F .
F .

If no jump is programmed in the THEN statement or
ELSE statement, the control continues the program
run with the program steps following the conditional
statement.

The ELSE statement may be omitted. In this case,
the control also continues the program run with the
program steps following the conditional statement.

IF condition

NO

ELSE statement 2

THEN statement 1

YES

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 65

Program example:
The robot is to search for a pallet loaded with a work�
piece on a shelf (weight approx. 200 kg). It has a
sensor in its lifting device for this purpose which in�
forms the control of the weight of the pallet.

When it has found the workpiece, it is to transport it
to the machine.

Starting position: The robot is positioned before the
top pallet.

Call of the subroutine �In";
(travel in, lift up pallet).

Conditional statement:

Evaluation of the signal < 180.0 kg;

(e.g only empty pallet weight)

Control decides on ELSE statement.

next:

In ;subroutine travel in and lift up

IF weight >= 180.0 THEN

 MOVE TO machine

ELSE JUMP search

WRITE 'Workpiece found'

search:

Down

JUMP next

 ;and travel down

 ;subroutine deposit, travel out

PAUSE

Next:

In

IF weight >=180.0

THEN MOVE TO machine

ELSE JUMP search

ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

É
É

É
É

É É
É É

ÏÏ

ÏÏ
ÎÎÎÎÉ É

Sensor

ÎÎÎ
200

ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÎÎÎÎ

É É

É É
É É

ÏÏ

ÏÏ
ÏÏ

ÎÎÎÎ
ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

160
É É

Decision for
ELSE statement

Signal to
rho3

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 66

Program jump to the jump label

�Search";

Call up the subroutine �Down";
(deposit of pallet, travel out, travel down).

Program jump to the jump label �Next:"

Call of the subroutine �In"; (travel in, lift up pallet).

Conditional statement:

Evaluation of signal 200 kg;

Control decides on THEN statement.

Movement instruction:

Travel to position "Machine".

Program run interruption:

Output of text:
"Workpiece found and delivered"
on monitor.

JUMP search

Search:

Down

JUMP next

Next:

In

IF WEIGHT > 180.0

THEN MOVE TO machine

ELSE JUMP search

MOVE TO machine

WRITE 'Workpiece found and delivered'

PAUSE

ÎÎÎÎ
ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÉÉÉ

ÉÉ
ÉÉ

É
É

ÉÉÉ

ÏÏ
ÏÏ

ÏÏ
ÏÏ
ÎÎÎÎ
ÎÎÎ

200

ÉÉÉ

ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÉÉÉ

ÉÉÉ
ÉÉÉ

ÏÏ

ÏÏ
ÏÏ
ÎÎÎÎÎÎÎÎ

ÎÎÎÎ 200

ÉÉ
ÉÉ

É
É

ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÉÉÉ

ÉÉÉ
ÏÏ
ÏÏ

ÏÏ
ÏÏ
ÎÎÎÎÎÎÎ
ÎÎÎ

ÉÉ
ÉÉ

É
É

ÉÉÉ

Signal to
rho

Decision for
THEN statement

200

ÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ

ÉÉÉ

ÉÉÉ
ÏÏ

ÏÏ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ

ÉÉÉ

ÉÉÉ

ÎÎ

machine

ÎÎÏÏ
ÏÏ

Workpiece
found
and
delivered

beep

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 67

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 68

5. Variable declaration

Numeric values, e.g. coordinate values for positions
or the number of repetitions, can be replaced by vari�
ables in a program.

A variable reserves a memory location under its
name.

A numeric value can be assigned to this memory lo�
cation any number of times. The control stores the
last-assigned numeric value in each case.

If a variable name occurs during the program run,
the control replaces the variable by the value stored
under its name at this point in time.

5. 1. Variable names

Every variable has a name. Different variables must
have different names. The names should be chosen
so that it is also possible to recognize the meaning of
these variables wherever this is possible, e.g.

Position designations:

instead of �B1", it is better to use �Bore_1",

e.g. arithmetic variables:

instead of �I", it is better to use �Counter"

etc.

Name:

The name consists of a maximum of 12 characters.

It is permitted to use letters, numbers and under�
lines.

The first character must be a letter (also see follo�
wing page):

Blanks are not permitted!

The first character of a name must be a letter.

It does not matter whether upper-case or lower-
case notation is used.

Exception:

Point variables of the data type JC_POINT.

These variables must start with the character @
(commercial a).

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 69

5. 2. Data types

The data type of a variable determines its value
range and the permitted assignment and arithmetic
operations. The permitted operations are described
in the section �Value assignment".

A distinction must be made for data types between
simple data types and structured data types.

Simple data types:

D BINARY
D INTEGER
D REAL
D CHAR

Structured data types:

D ARRAY
D POINT
D JC_POINT
D BELT
D TEXT
D WC_FRAME
D FILE
D DEF
D Channel

DEF only for point variables (POINT,JC_POINT)

D SEMAPHORE

A structured data type consists of two or more
simple data types.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 70

5. 2. 1. Simple data types

5. 2. 1. 1. INTEGER

Only whole-number values (numbers without deci�
mal point, positive or negative) must be assigned to
variables of the type INTEGER.

Value range:

 -231...+(231-1)

5. 2. 1. 2. REAL

Real numbers (numbers with decimal point, positive
or negative) may be assigned to variables of the type
REAL.

Value range:

approx. -1037...-10-38, real zero, 10-38...1037

Value inputs for variables of the type
REAL must be made with a decimal
point and not with a comma!

5. 2. 1. 3. BINARY

Only the digits 0 or 1 may be assigned to variables of
the type BINARY.

No whole-number arithmetic operations
may be performed with variables of the
type BINARY.

The digits 0 and 1 do not represent any values in the
conventional sense. They describe two defined
states, e.g.

Variable
name

0 1

switch off on

question no yes

bowl empty full

filled false true

Variables of the type BINARY are signals of the bi�
nary input and output channels, for example.

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 71

5. 2. 1. 4. CHAR

Only ASCII characters in accordance with DIN 66003
may be assigned to variables of the type CHAR.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 72

5. 2. 2. Structured data types

5. 2. 2. 1. POINT

Only positions in world coordinates may be assigned
to variables of the type POINT.

The individual coordinate values of a position of the
type POINT must be of the type REAL.

The kinematic must be specified for point variable
declarations where appropriate.

e.g. ROBOT_1.CORNER

If no kinematic is specified, the valid kinematic is the
first-specified kinematic in the kinematic declaration,
kinematic number one or the kinematic last selected
by the compiler statement

;; KINEMATICS =

e.g ;; KINEMATICS = ROBOT_1

5. 2. 2. 2. JC_POINT

Only positions in joint coordinates may be assigned
to variables of the type JC_POINT.

The individual coordinate values of a position of the
type JC_POINT must be of the type REAL.

Variable names of the type JC_POINT
must start with the character @!

Variables of the type POINT and JC_POINT are also
called point variables.

The kinematic must be specified in point variable
declarations where appropriate.

 e.g. ROBOT_2.@CORNER

The number of components depends on the number
of axes of the specified kinematic.

If no kinematic is specified, the valid kinematic is the
first-specified kinematic in the kinematic declaration,
kinematic number one or the kinematic last selected
by the compiler statement

;; KINEMATICS =

e.g ;; KINEMATICS = ROBOT_2

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 73

5. 2. 2. 3. TEXT

Only texts, consisting of up to 80 ASCII characters,
may be assigned to variables of the type TEXT. The
individual characters can be addressed directly like
array elements with an index.

Example:

 ; Declaration of text variables

TEXT : char_string

;Assignment of individual components

char_string [1] = 'A'

char_string [2] = 'B'

; Assignment of a text

char_string = 'THIS IS ALL ASCII TEXT'

5. 2. 2. 4. ARRAY

It is possible to combine variables of the same type
in an array. These variables all have the same name
and differ only with respect to the index. For this rea�
son, these variables are also called indexed vari�
ables.

Syntax:

ARRAY [([+ |-] Integer_constant)
.. ([+ | -] Integer_constant] Type:

Example :

ARRAY [-10..10] INTEGER : Variable name

5. 2. 2. 5. SEMAPHORES

SEMAPHORE : 'SEMA_NAME'

Variables of the type SEMAPHORE are used as para�
meters in the

EXCLUSIVE statement (see chapter "Parallel pro�
cesses").

5. 2. 2. 6. FILE

FILE : 'Cad_dat'

A file name is defined with the data type "File". This
is used as a parameter for access with WRITE or
READ.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 74

5. 3. Declaration of variables

Syntax:

[DEF] Type : [Channel No. =] Name { ,[Channel No. =] Name }

DEF is possible only for point variables(POINT and
JC_POINT) and channel number only for the types
INPUT,OUTPUT or BELT.

The control must know which values or characters a
variable may possess before execution of a state�
ment with variables.

For this reason, every variable used in the program
must be declared, i.e. it is necessary to define the
data type of the variable.

Variables of the type POINT and
JC_POINT need not be declared, e.g.
the compiler interprets undeclared vari�
ables as point variables and reserves
memory space for these in the point file
PNT.

JC_POINT variables start with the char�
acter @. They are assigned to the last
kinematic set by a compiler statement.

Programming:

The declaration consists of the data type and the
variable name to be assigned.

The data type is separated from the variable name
by a colon.

Several variable names of the same type are separ�
ated by commas.

Example:

 INTEGER: Counter

REAL: Divisor, xvalue, yvalue.

TEXT: message_1, message_2

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 75

6. Value assignment

Syntax:

Variable = Expression

Value assignments are used to assign values to vari�
ables, also standard variables, for speed and accel�
eration during the course of a program. The
assigned value must be of the same data type as the
variable.

Value assignment for general variables is described
in the following section. Value assignment for posi�
tions can be found in the section �Point variables".

Programming:

Assignment takes place via the = symbol. The name
of the variable to which a value is assigned must be
stated on the left side of the assignment. An express�
ion is located on the right side.

It is possible to enter

F numeric values (constants)
F variables
F arithmetic expressions
F standard functions

for the expression.

The sign + may be omitted.

The sign - is positioned directly before the variable
or constant. The negative expression must be put in
brackets if two operators follow each other directly.

All components must be multiplied by -1 if it is
wished to negate all components of a variable of the
type Point or JC_Point. -1.0 must also be put in
brackets in this case.

Corner = (-1.0)*corner

Examples:

Variable
Numeric value

Variable
Arithmetic expression

Variable
Standard function

Variable of the type REAL
Negation

Counter = 1

xvalue = yvalue + 2.5

Distance = SIN(alpha)

Value = -value

Variable of the type Point
Negation

Variable
Negative expression

d = d * (-2.0)

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 76

7. Arithmetic expressions

Arithmetic expressions are combinations of

F numeric values and/or
F variables and/or
F standard functions and/or
F other arithmetic expressions.

The type of combination is defined by the operator.
The rho 3 system knows five arithmetic operators:

Addition
e.g. k+ 1) 5

Subtraction
e.g. value = weight -1

Multiplication
e.g. length = width x 2

Division
e.g. height_new = height/2.0

Modulo calculation

only for data type INTEGER

e.g. rest = number MOD divisor

The characters + and - can also be
used as signs for variables and numeric
values.

Variables and numeric values with a sign
must be put in brackets so that two op�
erators do not follow each other directly.

There must be no sign on the left side of an assign�
ment.

The operations addition and subtraction can be per�
formed with variables and numeric values (constants)
of the type INTEGER, REAL, POINT, JC_POINT, while
the operations multiplication and division can be per�
formed with variables of the type INTEGER and
REAL.

Variables and numeric values of the type REAL can
also be used for multiplication and division of point
variables. (See �Point variables").

MOD

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 77

Arithmetic expressions / Modulo function MOD

The operators are executed in the following order:

* and / and MOD
before
+ and -

Calculation takes place from left to right within these
classes.

In addition, expressions which belong together can
be put in brackets (prioritized).

Modulo function

Modulo function: value1 MOD value2

The modulo function, data type INTEGER, calculates
the whole-number remainder from division of
�value1" by �value2".�Value1" and �value2" and the
result are of the type INTEGER.

Example:

Determination of the column of a pallet after specify�
ing the position number and column number.

Programming:

The position number must be substituted for �value1"
and the column number for �value2":

Calculation: 13/5 = 2 Remainder 3, i.e. column 3 is
the sought answer.

Calculation: 13/5 = 2 Remainder 3, i.e. row 3 is the
sought answer.

column = 13 MOD 5

row = 13 MOD 5

Example:

number = * and / before + and -

from left to right

Bracket first

* and / before + and -

Example:

number =

The pallet has 5 columns; (0, 1, 2, 3, 4)
which column and which row does position 13

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 19 19

20 21 22 23 24

occupy?

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 78

8. Standard functions

8. 1. Sine function: SIN (rad)

The sine function, data type REAL establishes the
mathematical relationship between an angle and the
side lengths in a right-angle triangle.

Programming:

The angle a must be specified in radian measure
�rad" (type REAL)

Formula for �rad":

rad+ a p
180°

p + 3.14;

The radian is specified after SIN in brackets, e.g.

The designation "avalue" was chosen
instead of only "a" because "a" has al�
ready been allocated as a reserved
name for acceleration.

8. 2. Cosine function

 COS (rad)

The cosine function, data type REAL, establishes the
mathematical relationship between an angle and the
side lengths of a right-angle triangle.

Programming:

See Sine function, e.g.

avalue = c * sin(alpha)

b = c * cos(alpha)

a

sina+ a
c

a

b

c

a

cosa+ b
c

a

b

c

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 79

8. 3. Arc tangent function

ATAN(expression)

The arc tangent function, data type REAL, deter�
mines the angle in a right-angle triangle by specifi�
cation of the side length.

The arc tangent function is the inverse of the tangent
function tan(a) and is defined as follows:

tan (a)+ a
b

The inverse function of the tangent function is then:

a+ ATAN a
b

The angle is available as a radian value. Conversion:

(a)+ rad * 180°
p

The result from ATAN (expression) must be substi�
tuted for rad.

Programming: (Example)

8. 4. Root function

SQRT(expression)

The root function, data type REAL, determines the
value of the square root of an expression.

Example: Length of a side c in a right-angle triangle

Programming: The variable designation a is already
occupied by the standard variable A for acceleration.
For this reason:

alpha = ATAN(avalue/b)

c = SQRT(avalue*avalue + b*b)

a

tana+ a
b

a

b

c

c+ a2) b2�

Pythagoras's theorem:

a2) b2+ c2

or

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 80

8. 5. Coordinate transformation

WC (@jc_point)

JC (wc_point)

Using the standard functions JC and WC, it is poss�
ible to calculate both with POINT and JC_POINT vari�
ables in an assignment.

transforms the joint coordinates into
world coordinates.

e.g. POS=WC(@POS).

transforms the world coordinates into
joint coordinates.

e.g. @Corner=JC(corner).

WC and JC always supply values from the main area
(if joint or world coordinates could be ambiguous).

(Also see �Mixed operations with point variables")

8. 6. Absolute value

ABS(argument)

The result supplied by the function is the absolute
value of the argument.

The argument may be of the type REAL or IN�
TEGER. The result is of the same type as the argu�
ment.

Example:

Deviation = ABS (Delta)

8. 7. TRUNC

TRUNC (argument)

The function transforms the argument of the type
REAL into a value of the type INTEGER by trun�
cation. In the case of a positive argument, the result
obtained is the largest whole number less than or
equal to the argument.

In the case of a negative argument, the result ob�
tained is the smallest whole number greater or equal
to the argument.

WC

JC

Bosch rho 3 rho 3
BAPS 2 ProgrammingFlexible Automation

 81

8. 8. ORD

ORD (CHARACTER_VARIABLE)

This function supplies the INTEGER value of vari�
ables of the TYPE CHAR

Example :

CHAR_NUM = ORD (ASC_CHAR)
CHAR_NUM = ORD('i')

8. 9. CHR

CHR (INTEGER)

This function supplies a value of the TYPE CHAR
corresponding to the calculation INTEGER MOD 256

Example:

ASC_CHAR = CHR (34)

8. 10. ROUND

ROUND (argument)

The function transforms an argument of the type
REAL into a value of the type INTEGER.

Rounding takes place to the whole number closest to
the argument. In the case of arguments which lie
exactly between two neighboring whole numbers
(e.g. 0.5, 1.5), rounding always takes place to the
even whole number, i.e. 1.5 is rounded to 2 and 6.5
is rounded to 6.

Example:

Value_3 = ROUND (7.81)

Value_4 = ROUND (-5.43)

8 is assigned to value_3 and -5 to value_4.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 82

8. 11. End of file

END_OF_FILE (argument)

This function allows interrogation of whether the end
of the file has been reached when reading a DAT file.
The argument is a variable of the type FILE.

The function yields the value 1(true) if the end of the
file has been reached and the value 0 (false) if the
end of the file has not been reached.

Example:

Use of the function in a conditional statement

IF END_OF_FILE(DAT_VALUES) THEN

ELSE

Use of the function in an assignment

EOF = END_OF_FILE (DAT_VALUES)

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 83

9. Point variables

Point variables are combined (structured) data types
and consist of components.

The components are the coordinates or axes of the
point variables.

In addition to the complete value assignment, it is
also possible to assign values to the point variables
component-by-component , e.g.:

CORNER.Z_K = HEIGHT

The component designation is specified with the
compiler statements:

and

as well

and

9. 1. Identification of point variables

The names of point variables of the type POINT start
with a letter.

Names of point variables of the type JC_POINT start
with the special character @.

;;JC_NAMES = Axis name, ...

;;Kinematic name.JC_NAMES= Axis name, ...

;; WC_NAMES = Coordinate name, ...

;;Kinematic name.WC_NAMES = Coordinate, ...

DEF POINT : Corner

 ARRAY [1..4] POINT : Point_array

 JC_POINT : @Interm_pnt

DEF ARRAY [1..8] JC_POINT: @JC_Pnt_array

Example:
Declaration of point variables

DEF ROBOT1.JC_POINT : @Depot

SR800.POINT : Start_point

JC_POINT POINT REAL

JC_POINT + +JC(...) *
- -JC(...) /

POINT +WC(...) + *
-WC(...) - /

REAL * * +
-
*
/

Permitted operations with point variables

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 84

 9. 1. 1. Points and point file PNT

While all other variables have to be declared, it is not
necessary to expressly declare point variables.

The BAPS2 compiler interprets all undeclared vari�
ables as POINT or JC_POINT and reserves the corre�
sponding space for this in the point file.

All points which are declared with DEF and all points
to which no value is assigned anywhere in the pro�
gram are stored in a point file with the extension
PNT.

Values can be assigned directly to these points with
the function DEFINE (see rho 3 PHG operation) by
TEACH-IN or value input.

Points from the PNT file can be assigned
values during the program run, i.e. the
content of the point file is overwritten,
only if they have been declared with
DEF.

Points which are not declared and to
which values are assigned in the pro�
gram are not stored in the point file but
in the IRD file.No values can be as�
signed to these points with the DEFINE
function.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 85

9. 1. 2. Complete value assignment

Values are assigned to all coordinates of the point
variables in the case of complete value assignments.

Only point variables of one data type must be con�
tained in an assignment.
Exception: Mixed operations with the standard func�
tions JC and WC.

9. 2. Assignment of numeric values

9. 3. Assignment of variables for individual components

The variables xvalue,yvalue,zvalue and
height are of the type REAL!

Example:

position = (50,0,100,0,15,10)

@edge = @(45,5.8,70,10,5.8,0)

Example:

hole = (xvalue,yvalue,zvalue,0,0,0)

@seat = @(50,95.8,height,40,38,0)

hole.Z_K = height

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 86

9. 3. 1. Assignment by addition and subtraction

The point variable �shelf" has been assigned the
sum of the point variable �position" and constant1.

The individual components are added or subtracted
respectively for addition and subtraction.

1) Constants consist of the bracketed string of their
coordinates. In contrast to variables, constants do
not change during the program run.

9. 3. 2. Assignment with multiplication and division

It is possible to change all coordinate values of point
variables or constants by multiplication and division
with numeric values or variables of the type REAL.

Example:

shelf = position + (10, -30, 100, 5,0,0,0)

Example:

Each individual component of pos_1 is doubled

Multiplication

by multiplication with 2 and is assigned
to the new point variable pos_2.

pos_2 then has the coordinates:

pos_2 = (20,20,20,0,0,0)

pos_1 = (10,10,10,0,0,0)

pos_2 = pos_1*2

Example:Division

pos_3 then has the coordinates:

pos_3 = (5,5,5,0,0,0)

div = 4.0

pos_3 = pos_2/div

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 87

9. 3. 3. Mixed operation with point variables

It is possible to perform mixed operations with point
variables of the type POINT and JC POINT by way
of the standard functions JC and WC.

The calculation must be performed in world coordi�
nates if it is wished to assign the result of the
arithmetic operation to a point variable of the type
POINT.

The calculation must be performed in joint coordina�
tes if it is wished to assign the result of the arithmetic
operations to a point variable of the type JC_POINT.

9. 3. 4. Reading the actual position POS

The current actual position of the robot can be as�
signed to point variables during the program run with
the standard point variables POS(world coordinates)
and @POS (joint coordinates).

Programming: The standard point variables are on
the right side of the assignment.

Component-by-component assignment is also
possible.

Example:

The control converts the world coordinates of the
point P2 into joint coordinates
and adds them to the coordinates of @P3.
The result is assigned to the point
variable @P1.

@P3 = @(0,100,0,0)

@PI = JC(P2)+@P3

ACT POS = POS

@MACH_POS = @POS

POS.K_3 = IPOS.K_3

xvalue = POS.K_1

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 88

9. 3. 5. Component-by-component assignment

New values can be assigned to individual coordina�
tes in the case of point variables.

Conversely, it is possible to assign coordinate values
of point variables to variables of the type REAL.

The coordinate names are defined in the machine
parameters or by a compiler statement.

In the following examples, the coordinates of a posi�
tion in world coordinates are identified by C1, C2,
C3...(Coordinates), while the coordinates of a posi�
tion in joint coordinates are identified by A1, A2,
A3...(Axis).

Programming:

The coordinate designation is appended to the name
of the point variable by a full stop, e.g.

The value 100 is assigned to the coordinate C3.

The third coordinate value of the point variable

The value of the variable "radius" (type REAL)

position.C3 = 100

zvalue = armature.C3

@pal_pos.A4 = radius

"armature" is assigned to the variable zvalue.

is assigned to coordinate A4, the position
described in joint coordinates.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 89

10. Text variable

Texts can be assigned to text variables within a pro�
gram.

Variable declaration

10. 1. Text assignment

The text to be assigned must be in inverted commas
(') and must have a maximum of 80 characters.

The text must be within one line.

10. 2. Variable use

Text variables can be output to an output channel
(PHG in the example) in the program with the BAPS
commands and can be read in with READ.

The variable itself must not be in in�
verted commas, e.g. WRITE 'instruc�
tion'. In this case, the control will output
the word �instruction" instead of the
agreed text.

Example:

The variables "message" and "instruction" are
of the type TEXT.

TEXT: message,instruction

Example:
message = 'Gripper is faulty'

instruction = 'Change pallet'

Example:

WRITE PHG, instruction

READ PHG,input_text

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 90

11. Arrays

Variables of the same type can be combined in ar�
rays.

Arrays consist of a freely selectable number of array
locations which are designated by ascending
numbers. A variable can be assigned to each array
location by specifying a number (index).

The variables in an array all have the same name
and differ only with respect to the index. The index
agrees with the number of the assigned array posi�
tion.

11. 1. Array declaration

The array declaration consists of
F Declaration instruction ARRAY
F Array limits (position numbers)
F Declaration of array variables

The array limits are specified in square brackets and
are determined on the basis of the first position num�
ber (first index = lower limit) and last position num�
ber (last index = upper limit).

The lower limit must be separated from the lower
limit by two dots, e.g. [3..8]

The upper limit of the array must not be lower than
the lower limit.

The index is of the type INTEGER.

Example:

Declaration of an array with 5 positions for the point
variable�hole", the first index is to be 1.

ARRAY [1..5] POINT: hole

All variables can be stored in arrays.

ARRAY[0..24] POINT: Pallet_Pos

ARRAY[-3..17] REAL: measured_val

ARRAY [1..9] POINT : depot_pos

ARRAY [0..10] TEXT : message

ARRAY [-10..10] INTEGER : number_pos

Examples:

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 91

11. 2. Value assignment for ARRAY variables

Each array variable is addressed by its name and the
index in the square brackets.

The variable �number" at array position -5 has the
value 1, the variable �number" at array position -4
the value 2, etc.

It is also possible to use a variable or expression of
the type INTEGER for the index. Value assignment is
then possible via the RPT statement or via the other
program loops.

Example:

Example:

Example:

RPT statement

Program loop

ARRAY[-5..0]INTEGER:number

number[-5] =

number[-4] =

number[-3] =

number[-2] =

number[-1] =

number[0] =

1

2

4

8

16

32

ARRAY[-5..0]INTEGER:number

INTEGER:i,k

i = -5

K = 1

RPT 6 TIMES

number[i] = k

i = i+1

k = k*2

RPT_END

;array with 6 positions

;index i and value k

;first index

;first value

;value assignment

;increment index

;change value

(any assignment)

;

ARRAY[-5..0]INTEGER:number

INTEGER:i,k

i = -5

K = 1

Label:

number[i] = k

i = i+1

k = k*2

IF i <= 0

;array declaration

;index i and value k

;first index

;first value

;jump label

;value assignment

;increment index

;change value

(any assignment)

;conditional statement

THEN JUMP label ;for program loop

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 92

Example:
Determination of pallet positions

Declaration:

The pallet has four rows and three columns, i.e. 12
positions.

The distance between the positions is specified by
dx and dy as an incremental dimension.

Point assignment:

The following applies to the individual pallet positions
palpos k:

(Line 23)

The position pos is a teach-in point, i.e. it is defined
by travelling to this point and storing it; it is the first
position palpos[1].

The entry in the initialization part is thus:

s = 0

z = 0

Incrementation of number of columns:

The next position palpos[2] is located in the neigh�
boring column. The column number s must therefore
be incremented (line 27). At the same time, the col�
umn number s must not exceed the total number of
columns (line 28).

If s is less than column, the control jumps to the
jump label �label_1" (line 21), increments the index k
by 1 (line 22) and assigns the value to the position
palpos[2].

pos) 1 dx) 0 dy

If s is higher than column, the control assigns the
value zero to the variable s (line 28) and increments
the row number (line 33).

Incrementation of row number: Incrementation of the
row number takes place analogously to incrementa�
tion of the column number.

The ELSE statement is missing in the IF-THEN
statement; if the condition z < row is not satisfied,
the control continues with the travel instruction (line
36).

palpos [k] = pos + s * dx + z * dy

1 PROGRAMM palpos

2

3 ;Determination of pallet positions

4

5 ; Declarations

6

7 INTEGER:row,column,s,z,k

8 ARRAY[1..12]POINT:palpos

9 BEGIN

10 dx=(30,0,0,0,0)

11 dy=(0,20,0,0,0)

12 row=4

13 column=3

14 s=0

15 z=0

16 k=0

17

18 ;Statements

19 ;Point assignment

20

21 label_1:

22 k=k+1

23 palpos[k]=pos+s*dx+z*dy

24

25 ;Increment number of columns

26

27 s=s+1

28 IF s<column THEN JUMP label_1

29 ELSE s=0

30

31 ;Increment row

32

33 z=z+1

34 IF z<row THEN JUMP label_1

35

36 ;Travel instruction

37

38 ;;INT=LINEAR

39 V=1000 AFACTOR=9.999

40 k=0

41 RPT 12 TIMES

42 k=k+1

43 MOVE TO palpos[k]

44 MOVE_REL WITH V=36 EXACT (0,0,–20,0,0)

45 WAIT 2

46 MOVE_REL WITH V=59 EXACT (0,0,+20,0,0)

47 RPT_END

48

49 MOVE_REL CIRCULAR ((–50,–50,100,0,0),

(–1OO,–100,0,0,0))

50 HALT

51 PROGRAM_END

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 93

12. Comparison

The control polls values and states in conditions, e.g.
�UNTIL condition" or �IF condition". This interrogation
takes place by means of comparisons.

Programming: The following characters are available:

= equal to
e.g.: p = 1

<> not equal to
e.g.: p<>1

> greater than
e.g.: p >1

>= greater than or equal to
e.g.: p>=1

< less than
.e.g: p<1

<= less than or equal to
e.g.: p<=1

Variables of the type BINARY, CHAR�
ACTER, POINT, JC_POINT and TEXT
can be polled only with respect to =
(equal to) or <> (not equal to).

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 94

13. Logic operations

The control checks conditions (also refer to �Com�
parisons", �conditional statements") with respect to
their truth value. Conditions can thus only have one
of two �values":

Value 1 for true

Value 0 for false

This also applies to variables of the type BINARY.

These variables can also only ever have one of the
two �values" 0 or 1.

13. 1. Combination of conditions

Often, the program sequence may depend on sev�
eral conditions simultaneously.

Variables and expressions (conditions)
of the type BINARY can be combined
with the logic operations AND, OR und
NOT.

Combinations of two conditions
cond_1 and cond_2 with AND

Combinations of two conditions
cond_1 and cond_2 with OR

Truth values

cond_1 cond_2 cond_1 AND cond_2

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0 0

0

0

Truth values

cond_1 cond_2 cond_1 OR cond_2

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 95

13. 2. Negation of conditions

The truth content of conditions and variables of the
type BINARY can be negated with the word NOT.

Notes on programming combinations of several
conditions.

Results of comparative operations are always of the
data type BINARY. If several conditions are combined
with each other, the order of operators must be ob�
served:

1. NOT

2. *, /, MOD, AND

3. +, -, OR

4. =, <>, >, >=, <, <=
Example:

Interrogation of numeric values of the variables i and
j of the type REAL:

IF i = 10 AND j = 50 THEN...

In this example, the control first processes the ex�
pression �10 AND j". However, 10 AND j represents a
�TYPE conflict" for the control, because the constant
10 is of the type REAL and not of the data type BI�
NARY.

Brackets are used in order to define the order for
processing expressions:

IF (i = 10) AND (j = 50) THEN...

Example 1:

Condition bed_1 is true, thus:
(cond_1)=1

If the word NOT is placed before the condition
cond_1, then the following is true for the truth
content of NOT cond_1:
(NOT cond_1)=0

Example 2:

The condition cond_2 is false, thus
(cond_2)=0
The following is thus true for the inverse function
with NOT:
(NOT cond_2)=1

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 96

14. Channels

BAPS2 permits reading or writing of any digital or
analog inputs or outputs present in the hardware
configuration.

The respective input or output is addressed by spec�
ifying a channel number in the declaration of input or
output variables.

The following channel numbers are available for
the rho 3:

14. 1. Channel declaration

In the channel declaration, the data type ((BINARY,
INTEGER or REAL) and the variable name of the
signal to be transferred are assigned to a channel
number.

It is necessary to define whether input or output sig�
nals are involved.

Please refer to the examples on the following page.

Channel number

 1..120

201..224

401..408

501..508

Type and meaning

BINARY inputs/outputs

REAL inputs/outputs

INTEGER inputs/outputs

Belt channels

Example: Signals of the type BINARY

INPUT : 1 = gate_switch1,
 2 = met_unit,
 5 = li_barrier

OUTPUT : 7 = alarm

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 97

14. 2. Data types

Depending on your control version, user channels
are available to you by which you can transfer data of
the type

Interrogation and setting to state 0 or 1.

Depending on version, the control pos�
sesses up to 120 binary inputs and up
to 120 binary outputs.

Interrogation and setting to whole-
number numeric values in the range be�
tween 0 and 255. The control treats
these numeric values internally as data
of the type INTEGER.

Depending on version, the control pos�
sesses up to 4 inputs and up to 8 out�
puts of the type INTEGER; also refer to
"rho3 Description of machine parame�
ters" and "rho3 Signal description".

Interrogation and setting to analog volt�
age values. The control treats these volt�
ages as data of the type REAL internally.
The number of analog inputs and out�
puts depends on the hardware configur�
ation and is defined via machine para�
meters P404 and P406.

Belt channels serve the purpose of syn�
chronization with conveyor belts or ac�
quisition of values by means of standard
position measuring systems.

Belt channels are (only) inputs of the
type REAL and may be located only
on the right side of an assignment.

Any measuring system input of the rho 3
can be used as a hardware input. Para�
meterization takes place via machine
parameter 501.

F BINARY:

FINTEGE
R:

F REAL:

F BELT:

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 98

14. 3. Programming

The individual channel assignments must be separ�
ated by a comma. There must be no comma after
the last assignment.

If the data type is not specified, the control automati�
cally assumes BINARY.

14. 3. 1. Interrogation of channels and signals

Interrogation and evaluation of the channels or their
assigned names takes place in conditions, e.g.

WAIT UNTIL gate_switch = 1

IF grip_force >= 26 THEN...

WAIT UNTIL meas_height >= 212

MOVE LINEAR UNTIL meas_height >= 200 TO
pos

It is not necessary to specify �=1" when interrogating
binary signals for 1. The control then automatically
interrogates for 1, e.g.

IF met_unit THEN ...

Output signals cannot be interrogated.
Interrogation is possible only for input
signals.

Example: Signals of the type INTEGER

INPUT INTEGER : 401 = grip_force,
 403 = meas_height

OUTPUT INTEGER : 401 = pressure

Example: Signals of the type REAL

INPUT REAL : 201 = torque,
 206 = force

OUTPUT REAL : 203 = speed

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 99

14. 3. 2. Setting signals

Signals are set in statements (see�value assign�
ment"), e.g.

pressure = 75

Input signals cannot be set. Setting is
possible only for output signals.

Binary signals can be combined with
AND, OR, NOT, e.g.

IF NOT gate_switch1

AND li_barrier

THEN alarm = 1

Exception:

WAIT UNTIL condition and

MOVE UNTIL condition:

No combinations are permitted here.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 100

15. Analog inputs/outputs

The option allows you to receive or output analog
signals in the form of voltage values at the interface.

The control thus informs itself about the voltage state
of externally connected devices, incorporates the
received values in the program run and outputs volt�
age values itself for control of external devices.

The control processes these input and output volt�
ages internally as decimal values (REAL values).

Analog inputs and outputs are addressed via the
channel numbers 201 to 224.

15. 1. Analog inputs

The corresponding inputs must be activated before�
hand so that the control can receive analog input
data during the program run.

This is done by means of the machine parameter
program (see rho 3 Description of machine parame�
ters).

- Activation of inputs

The number of user-accessible analog inputs is
defined with machine parameter P406.

Up to 24 analog inputs can be defined, depending
on the hardware configuration. MP SET

P406 ANALOG-INPUTS
 1
#

P406 NUMBER OF USER-ACCESSIBLE
ANALOG INPUTS

PHG menu

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 101

15. 1. 1. Hardware configuration Inputs

Machine parameter P401 serves to define the servo
card, connector and input module to be used for
reading the input signal.

In the adjacent example, all steps which must be
carried out when entering machine parameter P401
for analog inputs are listed in the corresponding
order.

The data required here depends on the configur�
ation of your control and robot. Please ask your
responsible service department for the interface
data valid for you.

15. 1. 2. Assignment of input channel numbers

Channel numbers are assigned to the analog in�
puts at the interface with machine parameter P407.

Permitted values: 201....224. The corresponding
analog inputs are addressed in a BAPS2 program
by means of this channel number.

ANA-Inp.1 MP SET
P401 CONST.M.S.BOARD
 Servo-B.: 1
#

ANA-Inp.1 MP SET
P401 CONST.M.S.BOARD
 --- Plug: X
#

ANA-Inp.1 MP SET
P401 CONST.M.S.BOARD
 POT Module No: 1
#

ANA-Inp. 1 MP SET
P401 CONST.M.S.BOARD
 POT Input: 1
#

P401 CONFIGURATION OF MEASURING SYSTEM CARD

PHG menu

Definition
of the servo
card

Input of
connector
number

Input of po�
tentiometer
module

Input of po�
tentiometer
module
input

P407ASSIGNMENT OF USER-ACCESSIBLE
ANALOG INPUTS

PHG menu

ANA-Inp.1 MP SET
P407 MEAN. OF A.-IN
Meaning: REAL:201
#

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 102

 15. 1. 3. Nominal value definition inputs

Machine parameter P401 is used to define a deci�
mal nominal value which corresponds to the deci�
mal input voltage of 10 V. A value range from 0.01
to 9999.99 is available for this purpose.

If the control now knows which value it is to assign to
a voltage of 10 V, it automatically assigns the propor�
tional REAL value to every other voltage value be�
tween -10 V and +10 V.

The value ranges for the analog inputs REAL 201
and REAL 202 are plotted in the adjacent example.

The nominal values have been defined at 500 and
1000.

15. 1. 4. Value ranges: Analog inputs

Permitted input voltage:-10V...+10V

Value range REAL variable:
-(Nominal value)...+(Nominal value)

Formula for REAL value:

REAL-value = input voltage [v] x nominal value

10 [v]

Nominal value = Machine parameter P405

ANA-Inp. 1 MP SET
P401 CONST.M.S.BOARD
Nom.val: 1000.00
#

P401 NOMINAL VALUES FOR ANALOG INPUTS

PHG menu

U[v]

Example

1000

500

-500

-1000

-10 -5 5 10

REAL 201

REAL 202

REAL VALUE

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 103

15. 2. Analog outputs

Analogously to analog inputs, analog outputs must
also be activated with the machine parameter pro�
gram before they can be used in the program run.

- Activation of outputs

The number of analog outputs is defined with ma�
chine parameter P404.

The maximum number of analog outputs is deter�
mined by the number of analog outputs available in
the hardware configuration, less the axes con�
trolled by the control system (every controlled axis
which is not controlled via the CAN interface oc�
cupies one analog output for setpoint output).

It is thus possible to activate a maximum of three
user-accessible analog outputs with an 8-axis
servo and a 5-axis robot (see adjacent allocation).

 MP SET
P404 ANALOG-OUTPUTS
 0
#

P404 NUMBER OF USER-ACCESSIBLE
ANALOG OUTPUTS

Analog outputs

1 1st axis
2nd axis
3rd axis
4th axis
5th axis
Analog output 1
Analog output 2
Analog output 3

2
3
4
5
6
7
8

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 104

15. 2. 1. Assignment of channel numbers (outputs)

Machine parameter P405 serves to assign channel
numbers to the outputs at the interface via which
the corresponding output is then addressed in the
BAPS program.

Permitted values: 201, 202, 203...max. 224

15. 2. 2. Nominal value definition (outputs)

Machine parameter P405 serves to define a deci�
mal nominal value which corresponds to the maxi�
mum output voltage of 13.3 V (10.0 for the narrow
3 to 5-axis servo card).

The value range from 0.01 to 9999.99 is available for
definition of nominal values.

If the control now knows which REAL value (nominal
value) corresponds to the voltage of 13.3 (10.0) V, it
then automatically assigns a proportional voltage
value between -13.3(10.0) and +13.3(10.0) V to
every smaller decimal value.

The adjacent example shows the voltage characteris�
tics of the analog outputs REAL 201 and REAL 202
plotted against the value range.
 The nominal values were defined as 500 and 1000
respectively in this case.

P405 ASSIGNMENT OF USER-ACCESSIBLE
ANALOG OUTPUTS
DEFINITION OF SERVO CARD AND

BAPS2 CHANNEL NUMBER FOR ANALOG OUTPUTS

ANA-Out. 1 MP SET
P405 MEAN. OF A.-OUT
Servo-B.: 1
#

PHG menu

ANA-Out. 1 MP SET
P405 MEAN. OF A.-OUT
Meaning: REAL:201
#

PHG menu

P405 NOMINAL VALUES FOR ANALOG OUTPUTS

ANA-Out. 1 MP SET
P405 MEAN. OF A.-OUT
Nom.value: 1000.00
#

PHG menu

U[v]Example

10

5

-5

-10

-1000 -500

500 1000

REAL 201 REAL 202

REAL VALUE

-13.3

(10.0)13.3

(-10.0)

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 105

15. 2. 3. Fixation of the voltage offset

The voltage offset for the analog output channels is
defined with machine parameter P405. The value
range for -100 to +100 is available for this pur�
pose

You thus determine the percentage share of the
maximum output voltage of 13.3 (10.0) V, which is
output during the program run even if the program
REAL value for the corresponding output is zero.

The voltage offset results in every output voltage
being increased or reduced by this value.

The adjacent diagram compares the characteristics
of three output voltages with different offset factor
by means of the relationship of

 REAL value

10 [v]nom. value

P405 VOLTAGE OFFSET ANALOG OUTPUTS
IN % OF MAXIMUM VOLTAGE

ANA-Out. 1 MP SET
P405 MEAN. OF A.-OUT
Volt.off. (%): 10.00
#

PHG menu

U[v]

-1000

1000

REAL-VALUE

-13.3(10.0)

-1.33

1.33

without offset factor

with positive offset factor (+10%)

with negative offset factor (-10%)

13.3(10.0)

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 106

15. 2. 4. value range: Analog outputs

Output voltage:

-13.3V...+13.3V (-10.0V..+10.0)

Value range REAL variable:

-(Nominal value)...+Nominal value)

Formula for output voltage:

output voltage [V] = REAL value Offset-factor [%]

Nom. value
+

100 [%]
x 13.3V

Nominal value = Machine parameter P405
Offset = Machine parameter P405

The error message INVALID VALUE is output and the
program is aborted if the permitted value range for
the REAL variable is exceeded.

The analog outputs are reset in the
event of a program abort and program
end, i.e. the offset voltage correspon�
ding to machine parameter P405 is pres�
ent at the analog output.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 107

15. 3. Declaration of analog input and output channels

Analog input and output values are treated internally
by the control as data of the type REAL.

Analog channels must therefore be de�
clared in the program as real inputs and
outputs.

Special reserve channel numbers must be assigned
to the analog channels so that the control can distin�
guish analog channels from integer digital channels.

The channels 201 to max. 224 had to be allocated
when the channels were activated, and you now
refer again to these.

The input and output channels must be declared in
the declaration part of the program.

The repective input and output may have any name,
but the name must not be longer than 12 characters.

The individual channel assignments must be separ�
ated by a comma. There must be no comma after
the last assignment.

If you should declare an invalid channel number (e.g.
301), this will lead during the program run to the
error message.

"INVALID VALUE"

Example

201 = ANA_INPUT_1,

202 = ANA_INPUT_2,

203 = ANA_INPUT_3

201 = ANA_OUTPUT_1,

202 = ANA_OUTPUT_2

INPUT REAL:

OUTPUT REAL:

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 108

15. 4. Interrogation of inputs - setting outputs

Analog inputs and outputs are treated like internal
variables of the type REAL in BAPS programs.

Example:

You have declared two analog inputs and two analog
outputs in a BAPS program.

Inside the control, the input variables are constantly
allocated values �from outside".

These input variables allow all arithmetic, logic and
comparative operations to be performed which are
permitted for REAL variables. (See Chap. 5 �Pro�
gramming with BAPS variables").

Output variables can be set directly
F by specifying a REAL values or
F with reference to an input variable or an

above-described operation.

15. 5. Restrictions

F No value assignment must take place to an
analog input variable within a BAPS program.

F An analog output variable cannot be read.
If one of these conditions is not observed, the follo�
wing error message appears when the program is
compiled.

"INPUT VARIABLE NOT PERMITTED HERE"
or
"OUTPUT VARIABLE NOT PERMITTED HERE"

Example:

PROGRAM ANA_IO

; Declarations

REAL: MEAS_VALUE_1, LIMIT_VALUE, MAX_VALUE

INPUT REAL: 201 = ANA_INPUT_1,

202 = ANA_INPUT_2,

OUTPUT REAL201 = ANA_OUTPUT_1,

202 = ANA_OUTPUT_2

;Statement part of the program

BEGIN

LIMIT_VALUE = 500

MAX_VALUE = 900

LOOP:

MOVE TO START_POINT

MEAS_VALUE_1 = ANA_INPUT_1 + ANA_INPUT_2

WRITE 'MEASURED VALUE = ', MEAS_VALUE_1

ANA_OUTPUT_1 = MEAS_VALUE 1 / 10

MOVE LINEAR UNTIL ANA_INPUT_1 >= LIMIT_VALUE TO

END_POINT

WAIT UNTIL ANA_INPUT_2 >= LIMIT_VALUE MAX_TIME = 10 ERROR JUMP

TIME_ERROR

IF ANA_INPUT_1 > LIMIT_VALUE THEN

 WRITE 'LIMIT VALUE INPUT 1 EXCEEDED'

ELSE

 ANA_OUTPUT_2 = ANA_INPUT_2

WRITE 'INPUT_2 = ', ANA_INPUT_2

IF ANA_INPUT_2 < MAX_VALUE THEN JUMP LOOP

TIME_ERROR:

WRITE 'Wait time expired'

HALT

PROGRAM_END

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 109

16. Special functions

Special functions in the control rho 3 for which no
BAPS2 language elements have been reserved are
made accessible to the BAPS2 programmer here.

Special funtions represent an extension of the BAPS2
language scope. However, they can be called in a
program only if they are activated in your control soft�
ware (as an option) and if they are declared before
they are called in a similar way to variables.

16. 1. Declaration of special functions

The declaration of a special function contains its
code number and designation as well as the names
and type designations of the function parameter(s)
by means of which you define in the special function
call when, where and how it is to be active. The dec�
laration must be made in the declaration part of the
program.

The designation of the special function and the na�
mes of the function parameters can be freely chosen.
The data types are predefined by the specification of
the respective special function.

16. 2. Calling special functions

Special functions are called in the statement part of
the program by specification of the special function
designation and definition of the agreed function
parameter(s).

The designation of the special function and the func�
tion parameter types used in the call must be as de�
fined in the declaration in the program.
The special functions which are currently available in
the rho3 control are described below.

Fct. No. Brief function description

 1 Exact-position switching of
digital outputs on the path

 2

 23 System time and date

 24 System timer

 27 Switching WC to main area

The following special functions are
currently available in the rho 3:

Exact-position switching of
decimal outputs on the path

Example:

Function

Special
function
desig-
nation

Data type
designation
of
function parameters
e.g.:
decimal value

Name of
function
variable

SPC_FCT : X = EXAMPLE (VALUE REAL: WAP)

(dummy)

number

Example:

Special function Definition of the
designation function parameter

EXAMPLE (15.5)

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 110

16. 3. Exact-position signal output for travel

General

The option allows exact-position control of an exter�
nal peripheral device with rate time from a BAPS pro�
gram during a travel movement.

Digital values are output at the interface with special
function 1 and whole-number values (process para�
meters) between 0 and 255 or real values with
special function 2 if the output channel is an analog
output.

These values can be used to control your technologi�
cal systems, e.g. the paint quantity for painting appli�
cations.

Exact-position output

A value is output here in conjunction with an exact
position, i.e. you define a certain gripper position in
the program at which the external device is to ex�
ecute the instruction received from the interface.

Programming

The control instruction is issued via the special func�
tion.

Special functions must be declared before they are
called in the same way as for variables.

SPECIAL FUNCTIONS

CALL

DECLARATION

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 111

16. 3. 1. Declaration of special function 1

The declaration of this special function includes the
code number 1 and the special function designation
as well as the names and type designations of the
function parameters by means of which you define in
the special function call at which position of the
corresponding axis which control value is to be out�
put.

The designation of the special function and the na�
mes of the function parameters can be chosen freely.

The control value (PARAM) is defined as a decimal
value, whereby a value < 0.5 is output as logical 0
(low) and a value > 0.5 as logical 1 (high).

Example
Code number Name of

function parameter
Comment

Type designation of function parameters

SPC_FCT : 1 = DIGITOUT (VALUE INTEGER: PPONO ; Number of function
VALUE INTEGER: KINNO ; Kinematic

VALUE INTEGER: COORDNO ; Coordinate
VALUE REAL: OUTPOS ; Output position

VALUE REAL: PARAM ; Control value
VALUE INTEGER: RATE) ; Rate time

Special function
designation

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 112

16. 3. 2. Declaration of special function 2

The declaration of this special function includes the
code number 2 and special function designation as
well as the names and type designations of the func�
tion parameters by means of which you define in the
call of the special function at which position of the
corresponding axis which control value is to be out�
put.

The designation of the special function and the na�
mes of the function parameters can be chosen freely.

The declaration of the special function must be con�
tained in the declaration part of the program.

The control value must be defined as a decimal
value. The value to be output is calculated in accord�
ance with the following formula if an INTEGER output
is used as the output channel, i.e. PPONO has the
values 1..8 (also see machine parameter P18):

PARAM = PARAM MOD (256),

i.e. the parameter to be output has the value range
0..255.

If the output channel is used as a REAL output, i.e.
PPONO has the values 201..208, the control value is
then weighted with the nominal value entered in ma�
chine parameter P406.

Example

Code number Special function
designation

Name of
function parameter

Comment

Type designation of function parameters

SPC_FCT : 2 = PAINTQTY (VALUE INTEGER: PPONO ; Number of the func�
tion VALUE INTEGER: KINNO ; Kinematic

VALUE INTEGER: COORDNO ; Coordinate
VALUE REAL: OUTPOS ; Output position

VALUE REAL: PARAM ; Control value
VALUE INTEGER: RATE) ; Rate time

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 113

16. 3. 3. Function parameters

You declare the following function parameters:

F Function number
This specifies the output channel via which the pro�
cess parameter is to be output; the values 1 to 8 are
permitted here (also see rho 3 Description of machi�
ne parameters P17 and P18 and P405,P406,P407).

In the case of special function 2, it is possible to
choose between digital (numbers 1..8) and analog
outputs (numbers 201..208) corresponding to the set
machine parameters.
F Kinematic
You specify in which kinematic the function is to be
used.
F Coordinate
This informs the control that a whole-number value
will be input in the special function call which defines
the coordinate or axis.

F Position
This informs the control that a decimal value will be
entered in the special function call which defines the
position on the previously stated coordinate axis.

Z

Y

X

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 114

F Control value (process parameter)
The control value is used to define a technology-re�
lated value.

A digital output is thus switched On (0) or Off (0) with
special function 1.

An 8-bit wide digital output or an analog output is
set with special function 2, depending on the output
channel used.

F Rate time
This informs the control that a whole-number value
will be entered in the special function call which de�
fines a correction time - the rate time.

Rate time

The rate time is the time in milliseconds which el�
apses between actual output of the control value and
attainment of the specified axis position.

The process parameter is thus sent to the external
device before the desired position is reached.

The rate time allows the reaction time of your pro�
cess peripherals to be compensated and thus makes
sure that the control signal is output at the "right"
time so that the switching function becomes active at
the desired position.

Only positive values are permitted for the rate time.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 115

Example

You wish to inform your metering system of a new
paint quantity which is to be become active exactly
when the gripper reaches the position POSF.

The position POSF has the coordinate value 100.75
on the X-axis.

The new paint quantity corresponds to the control
value 79.

Since you are less interested in the exact time of out�
put of the control value and more interested in its
realization at the time of a certain event (reaching of
X-coordinate value 100.75), you should also take
into account the reaction time of the power amplifier,
i.e. the time which elapses between arrival of the sig�
nal and its technical realization.

It is therefore recommended to accept the reaction
time of the power amplifier as the rate time since the
process parameter change then agrees in time
exactly with reaching of the X-coordinate value
100.75 independently of the path speed.

Please refer to the technical data sheet of your con�
nected power amplifier to determine its reaction time.

The rho 3 therefore outputs the control signal before
the position POSF is reached and thus achieves
speed-independent output of the process para�
meter.

This provides you with the possibility of varying the
path speed (in the test run, for example) without in�
fluencing process parameter output.

The control internally calculates the respective actual
output position in accordance with the valid path
speed and defined rate time.

An excessively high path speed moves
the actual output position to before the
start point of the travel movement. The
error message
�PPO:Pos not reached" is then issued.

Z

Y

X
100,75

POSF

Peripheral
device

Peripheral
device

Rate time

Time

X-axis

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 116

16. 3. 3. 1. Special function call

Once a special function has been declared, it can be
called any number of times in the statement part of
your program. To do this, specify the special function
designation (e.g. paint quantity) and define the de�
clared function variables.

Function variables

The PPO number defines the output channel via
which the process parameter is output. The output
address is defined by way of a machine parameter.
Up to 8 channels are possible in the rho3.

The kinematic number defines the kinematic for
which the process parameter output is to take place.

The coordinate axis is defined by input of 1, 2 or 3,
this corresponding to the axes X, Y or Z respectively
of the world coordinate system.

The position is defined by input of a decimal value
which expresses the desired axis position in milli�
meters.

The values from 0 to 255 are available in the case of
digital channels for the control value (Process para�
meter).

The rate time is defined by whole-number values
greater than or equal to zero and expresses the men�
tioned time in milliseconds.

The above example of a special function call contains
the following statement:

The control value 79 is output with a rate time of 60
ms onto the PPO output channel 1 at the coordinate
value 100.75 of the 3rd axis of the 1st kinematic.

Example

PAINTQTY(1,1,3,100.75,79,60)

Special
function desig-
nation

Function parameters

3

100.75

79

60

3rd axis of the kinematic

Coordinate value: 100.75mm

Control value 79

Rate time: 60 ms

1 Kinematic number

1 PPO-No. 1..8

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 117

16. 3. 4. Special function call with variables

Variables can also be used for the function parame�
ters in the special function call, e.g.

PAINTQTY (1,1,COORD, POINT, 207, RATE)

The variables must have been declared and set be�
forehand.

The call of special function 2 in line 51 of the adjac�
ent example would contain the following statement:

The process parameter 207 is output with a rate time
of 70 ms at the 3rd coordinate 98.70.

The advantage of variable programming is that you
can change the variables very easily by way of the
test system in the optimization phase.

16. 3. 5. Effect of the control value

A control value (process parameter) is constantly
present at the interface. The last-set value - from
an already completed program run - is still present
even at the start of the program before the first
special function is called.

For this reason, one often speaks of a process para�
meter change.

16. 3. 6. Preventing a process parameter change

A process parameter change programmed by
special function 2 is not executed if one of the follo�
wing conditions is applicable:

F The signal "feed hold" is triggered during a
travel block in which a process parameter
change is to take place. No process parameter
change occurs as long as the signal is pres�
ent.

F The signals "Traverse enable off all
kinematics" or the signal "Traverse enable" of
the corresponding kinematic is not set.

F The input signal �Reset" or RBS instruction
RESET is set.

F The signal "Emergency mode" is pending.

F System errors occur during the program run,
e.g. servo errors or interpolator stop.

Example

8 INTEGER: COORD,RATE

9 REAL : POINT

48 COORD

49 RATE

50 POINT

51 PAINTQTY(1,1,COORD,POINT,207,RATE)

= 3

= 70

= 98.70

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 118

16. 3. 7. Error messages

If you should not observe the defined function para�
meter ranges in the special function call, the control
will recognize this during the program run and output
the error message

�PPO/IOL:Err.PPO-Prog".

If you should not have incorporated the special func�
tion call in the program properly, the control will also
recognize this during program execution or in the
test run and output the error message

�PPO:Pos not reached".

Example

PAINTQTY(1,1,5,123,12,100)

PAINTQTY(1,1,3,123,12,100)

PAINTQTY(1,1,3,234,13,-100)

Invalid coordinate programmed.
If the selected kinematic has fewer than 5 axes.

Inadmissible process parameters programmed.
Only values in the range 0..255
are permitted.

Invalid rate time.
Only times greater than or equal to zero are

permitted.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 119

16. 3. 8. Calculation of the actual output position

The parameter 249 is to be output at the Y-coordi�
nate 120 with a rate time of 70 ms(see examp- le).

The gripper moves with a speed of 1000 mm/s from
the Y-coordinate 176 to the Y-coordinate 99.

The process parameter must therefore be output at a
position from which the Y-position 120 is reached in
70ms at a speed of 1000 mm/s.

Distance = Speed x time

= 1000 mm/s x 0.070 s

= 70 mm

In other words, the actual output position is 70 mm
before the specified output position.

(Y-coordinate value 120).

This is thus located at Y-coordinate value 190, and
thus leads to the above error message.

Output of the process parameter at the interface

The process parameter is output to the peripheral
equipment in accordance with the set machine para�
meters.

The pending process parameter is output both in the
program run and in test operation.

V = 1000 mm/s

99 120 176 190

Distance covered in
at 1000 mm/s

Y

70 ms

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 120

The rate time defines a time before a certain position
is reached at which the process parameter is output
or the existing one changed.

It therefore does not matter whether you are working
with a very high or very low gripper speed.

The rate time allows the process parameter to be
output at the "right" time independently of the pro�
grammed speed so that the control value becomes
active at the desired position.

An excessively high path speed or ex�
cessively high rate time may move the
actual output position to before the start
point of the travel block. The following
error message then appears:

�PPO:Pos not reached".

16. 3. 9. Preventing process parameter output

A process parameter change programmed by the
special functions 1 and 2 is not performed if one of
the following conditions is applicable:

F The signal "feed hold" is triggered during a
travel block in which a process parameter
change is to take place. No process parameter
change takes place as long as this signal is
present.

F The signals "Traverse enable off all
kinematics" or the signal "Traverse enable"
of the corresponding kinematic is not set.

F The input signal "Reset" or RBS instruction
RESET is set.

F The signal "Emergency operation" is present.

F System errors occur during the program run,
such as servo errors or an interpolation stop.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 121

16. 3. 10. Error messages

It must be ensured that the defined function para�
meter ranges are observed.

Otherwise, the control will recognize this during the
program run and issue the error message

 �PPO/IOL:Err.PPO-Prog".

In the adjacent example 2, the actual output position
of process parameter 1 is inside the travel block
range and 1)that of process parameter 2 outside it2)

(block 35/block 38).

The following error message thus appears:

�PPO: Pos not reached".

This error message is also output if the output posi�
tion is in the acceleration or deceleration phase of
the movement.

1) 100.75 + (140 x 0.06) = 109.15

2) 100.75 + (140 x 0.6) = 184.75

Example 2

POS6 = (40,176,70,0,60)
POS7 = (120,99,70,0,-10)

35 MOVE LINEAR VIA POS6
36 PAINTQTY(1,100.75,60)
37 AIRQTY(1,100.75,204,600)
38 MOVE LINEAR WITH V=140 VIA POS7

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 122

16. 4. Special function 23 System date and time

Special function 23 permits access to the system
clock of the rho 3 from a BAPS2 program. The day,
month, year, hours and minutes are determined.

Special function declaration:

16. 5. Special function 24 System counter

Special function 24 permits access to an internal real
time counter of rho3 from BAPS2. The current value
of the counter at the run time is determined.

The value of the system counter is written into the
variable transferred when the special function was
called.

The variable value is in the unit "milliseconds" [ms].
The counting time base corresponds to the clock
time. The real time counter is set to zero again by
every "start-up" of the control.

Code number Name of
function parameters

Comment

Type designation of function parameters

Special function
designation

SPC_FCT: 23 = CLOCK_DATE (INTEGER: HOURS, MINUTES, DAY, MONTH , YEAR) ; Declaration

Code number Name of
function parameters

Comment

Type designation of the function parameters

Special function
designation

SPC_FCT: 24 = SYS_COUNT (INTEGER: C_VALUE) ; Declaration

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 123

16. 6. Special function 27

Overrotation of the world orientation angles in WC
may occur as a result of coordinate transformation.

The special function 27 serves to eliminate this over�
rotation.

Preconditions :

The kinematic m u s t be travelled into the main area
with PTP interpolation before the special function 27
is called.

 { e.g.: MOVE PTP TO @(0,0,...) }

Example:

;;INCLUDE DEFINE

;DEFINE contains compiler statements

PROGRAM SPC27

SPC_FCT: 27=WC_MAIN_AREA(VALUE IN�
TEGER:KIN_NO)

BEGIN

MOVE ROBI_2 PTP @(0,0,0,0,0,0)

WC_MAIN_AREA (2)

PROGRAM_END

The above example relates to a 6-axis kinematic
with the name 'ROBI_2' which is the second kinema�
tic defined in the control. Travel to the main area
takes place in PTP interpolation mode:

{ @(0, 0, 0, 0, 0, 0) }.

After this, the special function 27 with the name
'WC_MAIN_AREA' is called for the second kinematic.

Code number Name of
function parameters

Comment

Type designation of function parameters

Special function
designation

SPC_FCT: 27 = WC_MAIN_AREA (VALUE INTEGER:KIN_NO) ;KIN_NO: Number of the kinematic for
 which the overrotation is to
 be remedied

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 124

17. Communication functions

General

The option permits communication of your control
with other intelligent systems during the program
run.

You thus extend your system limits by involving pe�
ripheral devices in the control sequence and obtain
the possibility of much more flexible programming.

The BAPS2 statements WRITE and READ are avail�
able for communication.

 Syntax:

WRITE Device name,Variable[,Variable]

READ Device name,Variable[,Variable]

Communication takes place via the serial interfaces
available on the control.

The output device is addressed by the device name.
This is assigned to a hardware interface via machine
parameters or via mode 9.1 with PHG 3 via a device
number.

The assignment of device number and interface con�
nection is shown in the adjacent table.

Assignment: Device No., device name, interface

Device No.

Interface:
CP/MEM 4

AF3

AF5

CP2.5

Device
name:

 0 1 2 3 4

X11

X11

X11

X12

X12

X22

X22

X22 X31

X11X13

PHG
V24_1..
V24_4,TTY

V24_1..
V24_4,TTY

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 125

17. 1. Protocol selection for communication functions

Different communication protocols are available for
communication. These can be selected by means of
the machine parameter setting or via mode 9.1 with
PHG3.

17. 2. The BAPS instruction WRITE

The instruction WRITE is used to output data from
the control via the specified interface.

As soon as the WRITE instruction is reached in the
program run, the desired variables, texts or other
data are output via the selected interface.

Data output takes place as an ASCII character string,
i.e. conversion from internal format to ASCII format
occurs.

 no7

1b

2

3

4

5

P.
NO
.

Protocol structure

< DATA > followed by < CR >or< LF >

< DATA >

< SOH >< STX >< DATA >< ETX >
followed by
< SOH >< STX >< CR >< LF >< ETX >

< SOH >< STX >< DATA ><ETX >

< DATA >

6 PHG protocol

rho 1/2 compatible with P. No. 3

Read

yes

yes

yes

 no

 no

 no

echo

< DATA > followed by < CR >< LF >

1a = Data input
1b = Data output

1a

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 126

17. 3. Interfaces

The data can be output via the interfaces (device na�
mes)
F V24_1

F V24_2

F V24_3

F V24_4

and

F PHG.

In order to identify the interfaces, you must enter
their names in the program after the WRITE instruc�
tion.

If no interface is specified, the control outputs the
desired data to the hand-held programming unit
PHG.

A comma must be entered after input of
an interface name.

WRITE

max. 80 characters max.128 characters

PHG V24_2 V24_3 V24_4V24_1

Example 1

WRITE PHG, G
The variable G is displayed on the PHG.

WRITE V24_2, TE
The variable TE is output via interface V24_2
e.g. to a printer.

WRITE '3'
The number 3 is displayed on the
standard output device.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 127

17. 3. 1. Transferred data

Constants and variables of the type

F BINARY

F INTEGER

F REAL

F CHAR

F TEXT

F POINT and

F JC_POINT

can be transferred.

When writing to the PHG, you can transfer a maxi�
mum of 80 characters (numbers, letters etc.) per
WRITE instruction; transfer of a max. of 120 charac�
ters per WRITE instruction is possible for the other
interfaces.

A few special restrictions apply to the individual data
types as regards the scope of transferability:

BINARY Only values 0 and 1.

INTEGER Whole numbers with a maximum of
10 digits in the range from between
-2147483648 and +2147483647 can be
transferred.

REAL Decimal numbers in the range between
-999999, and +999999 can be trans�
ferred, minimum resolution ±0.00001.
(Transfer takes place as a floating-point
number after REAL-ASCII conversion
with sign or blank, 6 digits and a deci�
mal point, whereby the position of the
latter depends on the value.)

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 128

POINT, The individual coordinate
JC_POINT values JC_POINT of a position of the

type POINT or JC_POINT must lie within
the limits of the type REAL.

CHAR All ASCII characters in
accordance with DIN 66003 can be
transferred.

TEXT All ASCII characters except ZERO can
be transferred. However, no more than
80 characters may be transferred in one
WRITE instruction.

In the case of text constants, the
text to be transferred must be placed in
quotation marks and be in one line.

If several variables or constants are to
be transferred within a WRITE instruc�
tion, these must be separated from each
other by a comma.

The WRITE instruction generates addi�
tional outputs, depending on the set
protocol (see above).

Example

K = 2

The following display appears on the PHG:

D = 0.123

WRITE PHG,K,'ND VALUE=',D

2ND VALUE = 0.12300

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 129

17. 4. The BAPS instruction READ

The READ instruction is used to request the control
to read variables from an interface.

As soon as the READ instruction is reached in the
program run, the control stops the movement se�
quence and waits until the data is present at the de�
sired interface.

The read-in variables can thus be used in the rest of
the program.

17. 4. 1. Interfaces

The control can read in the variables via the inter�
faces
F hand-held programming unit PHG
F V24_1
F V24_2, V24_3, V24_4

In order to identify the interface, the interface name
must be entered in the program after the READ in�
struction.

If no interface is specified, the control expects a data
input from the PHG.

A comma must be entered after the in�
terface name is input.

The waiting time until the program
aborts with the error message "Interface
error" as a result of missing data can be
set or deactivated by means of the inter�
face presetting.

Example

READ V24_1,G
The interface V24_1 must provide the

READ K
The value of the variable K must be entered at

standard input device.

variable G.

the

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 130

17. 4. 2. Transferred data

The control can be made to read in variables of the
type

F BINARY

F INTEGER

F REAL

F CHAR

F TEXT

F POINT and

F JC_POINT

A maximum of 120 characters (numbers, letters) can
be transferred per READ statement.

The following restriction applies to transfer in the
case of variable type INTEGER:

Only whole numbers with a maximum of 9 digits in
the range between

-999999999 and +999999999

can be read in.

The same restrictions as for the WRITE instruction
apply to the transfer scope of the other variable
types.

Error messages

The control may output the following error mess�
ages:
F �Interface error" A WRITE/READ instruction

has not been executed within the settable
time.

F �READ protocol error" The defined transfer for�
mat or the internal computer protocol has not
been observed for a READ instruction.

F �WRITE protocol error " A WRITE instruction
cannot be executed since the defined transfer
format or internal computer protocol has not
been observed.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 131

17. 5. Example: READ/WRITE

You wish to inform your control of the gripper posi�
tion POSITION at a certain point in the program. This
is then to be followed by travel to this position.

For checking purposes, you wish to display the cur�
rent gripper position on the PHG beforehand (block
38) and also document this using your printer (block
39). Your printer is connected to the interface V24_2.

The request for coordinate input is written to the
standard output device with the program blocks 40,
41, 42.

In block 43, the control expects input of the coordina�
te values of the point POSITION on the keyboard of
the standard output device.

You enter the following position for a 5-axis robot,
for example:

200,0,120,-20,40

The input must be terminated with RE�
TURN.

The read-in point variable can now be approached
(block 44) and output to the printer (block 45, 46).

Example

35 MOVE_REL DIS12,DIS14

36 MOVE_REL CIRCULAR (KP7,KP8)

37 ACT_POS=IPOS

38 WRITE 'Position circle end=',ACT_POS

39 WRITE V24_2,'Pos. circle end=',ACT_POS

40 WRITE ' '

41 WRITE 'Enter the coordinates of the '

42 WRITE 'gripper position '

43 READ POSITION

44 MOVE LINEAR EXACT POSITION

45 WRITE V24_2, 'Coordinates of POSITION'

46 WRITE V24_2, POSITION

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 132

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 133

 18. File operations

18. 1. General

The following BAPS2 statements are available for file
operation:

READ_BEGIN <File name>,[Line number]

READ <File name> ,Variable list

WRITE <File name> ,Variable list

END_OF_FILE <File name>

WRITE_BEGIN <File name>

WRITE_END <File name>

CLOSE <File name>

File operations permit access to files of the type DAT
during the program run.

The control reads values out of these DAT files and
includes them in the program run.

It is also possible to write arbitrary values from a
BAPS program into a DAT file.

18. 2. The DAT file

Numeric values for all variable types valid in BAPS
can be stored in files of the type DAT.

The DAT file thus represents a value reservoir for pro�
gram variables.

Creation of a DAT file

Like files of the type QLL, DAT files are also created
and edited on the EDIT level.

BAPS

DEMO.DAT
LE.DAT

10 12 14 16

69 66 99

52 33 27

200

96

0 180

5

0 300

27

96 200

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 134

Example

You wish to create a DAT file to �store" values which
you can subsequently allocate to variables in a flex�
ible way in the subsequent program run.

You thus create a DAT file by INCLUSION of values
and comments.

Comments may be located at the line start or line
end, but must always begin with a semicolon (;).

If a comment is located at the start of a line, this
means that the line is a pure comment line, and no
values may be written in this line.

18. 2. 1. Rules for DAT files

F Different data types may be included in the file
in any order (e.g. INTEGER, REAL,
JC_POINT).

F The following characters are permitted for
representation of numbers:
0 1 2 3 4 5 6 7 8 9. + -
Decimal numbers (REAL) are represented as
6-digit floating-point numbers.
For the representation of CHAR and TEXT the
characters " "(space) "z" are permitted.

F The decimal point symbol "." is permitted only
for numeric values of the type REAL and thus
also for the types POINT and JC_POINT.

F At least one space must always be placed be�
tween values to separate them (any number of
spaces is possible).

F An automatic shift to the next line takes place
at the line end.
For this reason, it is not necessary for there to
be a space after the last value in a line.

F Line numbers are visible within the
DAT file only in EDIT mode (no line information
for PRINT or WRITE).

Example

;***********************
; NAME: VALUES.DAT
; DATE: 29.2.88
;***********************

10 20 30 40 ;HEIGHT

100 200 300 400 ;LENGTH

600 700 800500

12.15 21.2 1.5 ;R_POS

-160.7 -90 0

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 135

18. 2. 2. Access to a DAT file

If you wish to access one or more DAT files within the
scope of a main program, these must be declared as
variables of the type FILE.

18. 3. DAT file declaration(s)

Syntax:

FILE : File name[,File name]

The file declaration must be contained in the declar�
ation part of the program.
The control can read or write values from several va�
lues of the type DAT within a BAPS program. Simul�
taneous reading out a file opened for writing is not
possible.

18. 4. The file Read statement.

Syntax:

READ File name,Variable[{,Variable}]

The control is requested to read in values from a file
of the type DAT by the instruction READ.

The declared file name of the DAT file must be en�
tered in the program after the READ instruction so
that the control knows from where it is to obtain the
desired data.

This is followed, separated by a comma, by specifi�
cation of the program variable to which a value is to
be assigned from the DAT file by the READ instruc�
tion.

The read instruction can be extended by allocation of
a second or further program variables from the same
DAT file.

Example

FILE: VALUES,ERG,DISTANCES
INTEGER: NUMBER, I
TEXT: DISPLAY,FONT

Example

READ VALUES, NUMBER

READ ERG, I, NUMBER

The control reads in a whole-number value
for the variable NUMBER from the file
VALUES.DAT.

The control reads in a value from the file
both for the variable I

and for NUMBER.
ERG.DAT

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 136

18. 5. Selection of a value within the DAT file

The position of the �invisible READ pointer" is decis�
ive in determining which value is read within the DAT
file as a result of a READ instruction.

This pointer is used by the control so that it knows at
which point in the file it was last active as a result of a
READ operation.

When the next READ instruction occurs, the control
automatically jumps to the following value, reads this
value and then positions the �invisible READ
pointer".

In this way, the control �reads" from value to value
and from line to line.

If the variable type from the program
does not agree with the read value in
the DAT file, the control outputs an error
message.
Leading blanks and comments are
ignored when reading variables of the
type BINARY, INTEGER, REAL, POINT
and JC_POINT.
When reading variables of the type
CHAR and TEXT, all characters from the
actuell "invisible READ pointer" are read.
Note: If you want to read variables of the
type CHAR and TEXT from beginning of
a line, you should position the "invisble
READ pointer" by using the
"READ_BEGIN" statement.

18. 6. READ_BEGIN selection of a certain line

Syntax:

READ_BEGIN File name[,Line number]

The �invisible READ pointer" jumps to before the
start of a desired line as a result of the BAPS instruc�
tion READ_BEGIN.

The next READ instruction thus results in the first
value of this desired line being read and assigned to
a certain variable.

The BAPS instruction READ_BEGIN is a
positioning instruction for the �invisible
READ pointer".
It does not result in reading of a value.

Example

;***********************
; NAME: VALUES.DAT
; DATE: 29.2.88
;***********************

10 20 30 40 ;HEIGHT

100 200 300 400 ;LENGTH

600 700 800500

12.15 21.2 1.5 ;R_POS

-160.7 -90 0

Example

READ_BEGIN VALUES, 7

READ_BEGIN VALUES, (V+N)

The "invisible pointer" jumps in the file

The "invisible pointer" jumps in the file

VALUES.DAT to before line 7.

VALUES.DAT to a certain line, which is
yielded by the expression V+N.

READ VALUES, NUMBER

The first value of the line (V+N) is read in
for the program variable NUMBER.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 137

If no line number is specified, the control
interprets this as a positioning instruc�
tion to the start of the file, and therefore
positions the �invisible READ pointer"
before the start of line 1.

18. 7. The BAPS standard function END_OF_FILE

Syntax:

END_OF_FILE (File name)

This function permits interrogation of whether the file
end has been reached when reading a DAT file, i.e.
whether the invisible READ pointer is pointing to the
last value of the file.

Interrogation can take place by means of the BAPS
instruction �IF THEN".

The DAT file name must be placed in
brackets.

18. 8. The BAPS instruction WRITE

Syntax:

WRITE File name,Variable[{,Variable}]

It is possible to write one or more values into a DAT
file by using the instruction WRITE and specifying a
declared DAT file.

If you wish to write several values in one line, this
must be done with a WRITE instruction. Each WRITE
instruction opens a new line.

A file opened for writing can be read
again only after a CLOSE instruction.

Example

IF END_OF_FILE (VALUES)

As soon as the last value in the file V ALUES.DAT

THEN JUMP FINISHED

has been read, the control jumps in the main
to the jump label FINISHED.program

Example

FILE: VALUES, ERG

The value 700 is written in the file V ALUES.DAT

INTEGER: W

WRITE VALUES, 700

WRITE ERG, V, W-10

The value which is possessed by the variable V
at the time of the WRITE instruction is written
in the file ERG.DAT along with the value yielded
by the expression W-10.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 138

The WRITE instruction writes the desired value in the
DAT file in the line which follows the current position
of the invisible WRITE pointer.

The file is overwritten as from this line!
The previous content of this and all follo�
wing lines is thus deleted!

The invisible WRITE pointer always identifies the
position in the DAT file at which the program last ex�
ecuted a WRITE instruction.

A WRITE_BEGIN instruction must be programmed
once before the first WRITE instruction.

18. 9. WRITE_BEGIN Selection of a certain line

Syntax :

WRITE_BEGIN File name[,Line number]

The instruction WRITE_BEGIN results in a jump of
the invisible WRITE pointer to the start of a certain
line and the file is opened for writing with this instruc�
tion.

As a result of this, the next WRITE instruction writes
values from the BAPS program in the desired line of
the DAT file. The previous content of this line and all
following ones is deleted.

The DAT file is deleted (overwritten) as
from the line number specified in the
WRITE_BEGIN instruction.

A WRITE_BEGIN instruction must be programmed
once before the first WRITE instruction. This opens
the file and positions the WRITE pointer to the start of
the file or to an arbitrary line number.
After this, no further WRITE_BEGIN instruction is nor�
mally necessary, unless the DAT file is to be deleted
again as from a certain line number.

A new DAT file is automatically created if
no DAT file with the file name specified
in the WRITE_BEGIN instruction exists
yet.

DEMO.QLL

VALUES.DAT

300 600 900

27.75

700

.

WRITE VALUES, 700

300.20 300.80

19.05

.

.

.

Example

WRITE_BEGIN VALUES ,(I+R)

The invisible WRITE pointer jumps in the
file VALUES.DAT to before the line
whose line number is calculated from
the expression I+R.

WRITE VALUES, F, 100-R

The values for the program variable F and the
expression 100-R are written in the line (I+R) of

file VALUES.DAT the

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 139

18. 10. The BAPS instruction WRITE_END

Syntax:

WRITE_END File name

The BAPS instruction WRITE_END results in a jump
by the invisible WRITE pointer to the end of the DAT
file.

This excludes the possibility of a DAT line being over�
written for the next WRITE instruction. The desired
values are then placed at the end of the file.

It is the purpose of this instruction to complement
already existing DAT files.

18. 11. The BAPS instruction CLOSE

Syntax:

CLOSE File name

An open file is closed with the CLOSE instruction:

CLOSE File name

Example

WRITE_END, VALUES

The invisible WRITE pointer jumps to the end

WRITE VALUES, 700

The value 700 is written in a new line at the end

the DAT file

of the DAT file

of

Example

CLOSE values

The file VALUES is closed.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 140

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 141

19. Compound statements

Syntax:

BEGIN { Statement } END

Several statements can be combined by means of a
compound statement.

A statement string may be included instead of one
statement.

BEGIN

Statement

Statement

END
IF ready THEN

BEGIN

INPUT : 1 = Valve_1,

 2 = Valve_2

END

ELSE

BEGIN

END

Valve_1=1

Valve_2 = 1

PROGRAM_END

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 142

20. Parallel processes

The control rho 3 can execute several user pro�
cesses (programs) simultaneously. This feature is
also known as multitasking capability.

The parallel processes are either defined within the
same program (internal processes) or are each de�
fined in a separate program (external processes).

20. 1. External processes

An external process can be started or stopped by a
program. Further synchronization does not take
place.

In other words, the external process may still be acti�
ve even if the program which has started the external
process and has not stopped it again is terminated.
The process may be stopped, for example, by a third
process.

The external processes are included in the "External"
statement.

20. 1. 1. Starting and stopping external processes

External processes can be started either by

_ selection on the PHG3

- program selection via the file
EXPROG.DAT and corresponding

interface signals

- the BAPS2 statement START

from a running BAPS2 process.

The START statement can be extended
by priority information:

The process name is the name of the BAPS2 IRD file
and must be declared with EXTERNAL.

The priority code must lie between 100 (highest
priority) and 150 (lowest priority).

100 is taken as the default value if no priority is speci�
fied.

START process name PRIO = number

EXTERNAL: temp_control

START temp_control

STOP temp_control

.

.

.

.

.

.

START temp_control PRIO = 100

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 143

An external process is stopped with the STOP statement.

The process name is the name of the BAPS2 IRD file
and must be declared with EXTERNAL.

20. 2. Internal processes

Internal processes are executed simultaneously with�
in a program. In contrast to external processes, syn�
chronization takes place here. The main program is
started after a PARALLEL_END statement only after
all parallel processes have been completed.

Internal processes are defined as follows:

STOP process name

PARALLEL

ALSO

ALSO

PARALLEL_END

Program statements;

Process statements

Process statements

.

.

.

STOP temp

PARALLEL

ALSO

PARALLEL_END

.

.

MOVE sr800 TO corner

MOVE_REL feeder EXACT (0,100)

.

.

.

.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 144

20. 3. Semaphores

If parallel processes access common resources (e.g.
output devices), assignment can be managed by
means of an Exclusive statement.

The semaphore names are declared with the sema�
phore statement:

EXCLUSIVE Semaphore name

EXCLUSIVE_END

Statement

SEMAPHORE : Semaphore name

EXCLUSIVE

EXCLUSIVE_END

SEMA_V24_1

WRITE V24_1, n

SEMAPHORE: Sema_V24_1

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 145

21. Compiler statements

BAPS2 contains compiler statements which are used
to control the compiler and reduce the writing work.
The compiler statement always starts with two suc�
cessive semicolons.

The following compiler statements exist:

;; INCLUDE Name

;; PROCESS_KIND = PERMANENT

;; [Kinematic_Name .] INT = CIRCULAR |
PTP | LINEAR

;; CONTROL = RHO3 | IQ140

;;KINEMATICS: ({ INTEGER_Constant =
 Kinematic_Variable | , })

;; KINEMATICS = Kinematic_Variable

;; Kinematic_Variable .(JC_NAMES |
 WC_NAMES") = { Name || , }

The compiler statement for the axis (JC) names and
for the destination control must be located before the
first source symbol, i.e. before the program declar�
ation.

21. 1. Kinematic definition

The control can control several kinematics simulta�
neously.

If more than one kinematic (robot, feeder units etc.)
is to be controlled with a BAPS program, these must
first be defined once:

It is now possible to distinguish between the kinema�
tics in the program and it is clear to which kinematics
the respective instructions are to refer.

The kinematic definition must take place after a con�
trol definition (if present) and before the PROGRAM
statement.

;;KINEMATICS: (1=sr800, 2=kin2)

;; KINEMATICS: (Kinematic NUMBER= Kinematic name)

;; CONTROL=RHO3

;;KINEMATICS: (1=sr450, 2=feeder)

PROGRAM main

.

.

.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 146

21. 2. Coordinate (WC) name definition

The world coordinate points contain the components
for the position and orientation. The component na�
mes can be defined:

If several coordinates are controlled by a BAPS pro�
gram, the kinematic name must be specified first:

The coordinate declaration must be contained in one
line and must not be interrupted by a line end.

;; WC_NAMES = WC name, ...

;; WC_NAMES = X_C,Y_C,Z_C,U_C,V_C

;;kinematic_name.WC_NAMES = WC_NAMES, ...

;;automat.WC_NAMES =

;;sr800.WC_NAMES = X_C,Y_C,Z_C,A_C

X_C,Y_C,Z_C,U_C,V_C

Example of coordinate declarations :

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 147

21. 3. Axis (JC) name definition

The joint coordinate points contain the components
for the individual axes. The axis (JC) names can be
defined:

The kinematic name must be specified first if several
coordinates are controlled by a BAPS program:

The JC name declaration must be contained in one
line and must not be interrupted by a line end.

;;JC_NAMES = JC name, ...

;;kinematic_name.JC_NAMES = JC name, ..

;; JC_NAMES = A_1,A_2,A_3,A_4

;;automat.JC_NAMES =

;;sr800.JC_NAMES =

A_1, A_2, A_3, A_4, A_5, A_6, BND

A_1, A_2, A_3, A_4

Example of JC name declarations :

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 148

21. 4. Kinematic-related statements and data

If several kinematics are controlled by a BAPS pro�
gram, it is necessary to make a distinction in the pro�
gram as regards the kinematic to which statements
or data refer. This is the case for:
F Point variables
F Movement instructions
F Tool statements
F Working area limits

The kinematic name precedes the point variable:

or

The currently preselected kinematic is assigned if no
kinematic information is provided.

The movement instructions may additionally contain
the kinematic information or the preselected kinema�
tic is controlled (see Chapter "Movement instruc�
tions").

The kinematic name must be specified immediately
after the REF_PNT key value in the reference point
statement.

The same applies analogously to the TOOL and
LIMIT_OFF,LIMIT_MIN and LIMIT_MAX statements:

Kinematic name.POINT

Kinematic name.JC_POINT

REF_PNT Kinematic name (axis number)

TOOL Kinematic name Tool name

LIMIT+OFF Kinematic name

LIMIT+MIN Kinematic name (parameter)

LIMIT+MAX Kinematic name (parameter)

sr800.POINT: corner

kin2.JC_POINT: @fetchpos

REF_PNT sr800 (1,2,3,4)

TOOL automat gripper

LIMIT_OFF sr800

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 149

21. 5. Inclusion of files

The compiler statement

allows parts of source programs to be included in the
program; see adjacent example.

The file BAPS.QLL contains the declarations of your
inputs, for example. These are defined with respect
to

F data type
F channel number
F variable name of the signal

Declarations of your outputs. These are defined with
respect to

F data type
F channel number
F variable name of the signal

;; INCLUDE file name

Example:
 .
 .
;; INCLUDE BAPS
 .
 .

;BAPS.QLL

;FILE FOR AUTOMATIC INCLUSION OF

;THE DECLARATION PART IN COMPILATION

;DECLARATION INPUTS:

INPUT REAL: 1=GRIPPER_CONTACT,
4=MEAS_HEIGHT

INPUT: 11=GATE_SWITCH1,
15=LI_BARRIER

;DECLARATION OUTPUTS

OUTPUT: 7=ALARM

OUTPUT REAL: 1=PRESSURE,
2=METER_UNIT

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 150

21. 6. Process kind

A process can be declared as permanent by means
of the compiler statement

This means that this process cannot be ended with
"Reset" or Automatic/Manual switch-over.

Permanent processes must not contain any move�
ment instructions.

The compiler statement must precede the PRO�
GRAM-statement.

;;PROCESS_KIND = PERMANENT

;;PROCESS_KIND = PERMANENT

PROGRAM temp_control

PROGRAM_END

.

.

.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 151

21. 7. Test information

The compiler statement

permits generation of test information for the IRDATA
code to be switched off for convenient test operation.

This is generally expedient only for completely tested
application programs.

Since information is then missing from the IRDATA
code, the IRDATA code is shorter and is executed
more quickly. However, a test with the test system is
then no longer possible.

Generation of test information is switched back on
again with

The two test info statements can be used any num�
ber of times in the program. The program can then
be tested in the corresponding sections.

;;TESTINFO -

;;TESTINFO +

;;TESTINFO -

;;TESTINFO +

.

.

.

.

.

.

.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 152

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 153

22. Tool change

TOOL.DAT and language symbol TOOL

General

The option 'Tool change' allows the coordinate trans�
formations of the individual kinematics to be adapted

- to the active tool (e.g. for bundle, turret
 gripper),

- to assembly inaccuracies.

The path control is always referred to the Tool Center
Point (TCP) of the active tool (gripper).

Coordinate transformation

Coordinate transformation is divided up into several
parts in order to permit work with different tools
(grippers) in the world coordinate system:

 (1) The first part takes into account the robot kine�
matic up to the flange defined by machine parame�
ters. This is determined by the robot type (P306),
number of axes (P302), arm lengths (P307) and
coupling factors (P308). The flange cannot be
changed from BAPS.

(2) The second part takes into account the kinema�
tic of the tool from the flange to the Tool Center
Point. There are 2 possibilities for tool definition,
which can also be combined with each other if re�
quired:

(2a) One tool can be defined by means of machine
parameter P309 (flange coordinates). This is active
after the control run-up and cannot be changed
from BAPS. The zero point of the flange coordinate
system is located in the flange defined by (1).
3 translations

 (FL_X,FL_Y,FL_Z)

and 3 rotations

(FL_O1,FL_O2,FL_O3) are entered as flange coor�
dinates.

(2b) Several tools can be defined by means of the
file TOOL.DAT. None of these tool coordinate sys�
tems is active after the control run-up. They can
be activated from BAPS and can be changed on-
line during operation.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 154

For general description purposes, 3 translations

(G_X,G_Y,G_Z)

and 3 rotations

(G_O1,G_O2,G_O3) are used again.

The zero point of the tool coordinate systems is de�
fined by (2a). If the flange coordinates (P309) are
equal to zero

(i.e. FL_X=FL_Y=FL_Z=FL_O1=FL_O2=FL_O3=0),

this means that the zero point of the tool coordinate
system agrees with the flange defined by (1).

Notes

The orientation of the flange or coordinate system
and definition of orientations depend on the robot
type. Refer to the corresponding transformation
documentation for more details.

However, FL_Z and G_Z point in the action direction
of the flange or tool for all kinematics.

The orientations are defined as follows for the stan�
dard tool:

FL_O1 (G_O1)

Rotation about the axis FL_Z (G_Z)

FL_O2 (G_O2)

Rotation about the resultant axis FL_Y' (G_Y')

FL_O3 (G_O3)

Rotation about the resultant axis FL_X" (G_X")

Which of the orientations

FL_O1, FL_O2, FL_O3, G_O1, G_O2, G_O3

are actually included in the transformation depends
on the robot type and specifically on the number of
axes and thus the number of degrees of freedom of
the robot.

The numeric values act additively if flange coordina�
tes (2a) and tool coordinates (2b) are used simulta�
neously.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 155

22. 1. Format of the file TOOL.DAT

As mentioned above, all possible tool coordinate sys�
tems are stored in the file TOOL.DAT.

WERKZG is the reserved German name for the file to
be produced by the user himself. In foreign lan�
guages, the reserved name must be taken from the
corresponding text file (e.g. English: TOOL.DAT).

The individual tools are provided with a name which
can be freely selected by the user. The correspon�
ding coordinates are then stored under this name.

The file TOOL.DAT is edited as a whole as an ASCII
file in the robot operating system or edited off-line.
One tool name and all corresponding coordinate
values are entered as follows for each line:

Syntax:

Tool name = G_X G_Y G_Z G_O1 G_O2 G_O3

whereby G_X , ... , G_O3 represent the correspon�
ding numeric values.

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 156

The tool name must be located at the start of the line
and may have a maximum of 12 characters. It can be
freely selected.

The tool name and coordinate values must be separ�
ated by the '='.

The order of the individual coordinates: First G_X,
then G_Y, ... finally G_O3, must be observed under all
circumstances. The individual coordinate values
must be separated by spaces (any number is poss�
ible). The values are decimal values, whereby the
decimal point need not necessarily be entered. Only
the inputs '0','1',...,'9','+','-','.' are permitted for the
coordinate values.

Zeros must be entered explicitly for missing values. If
fewer than 6 coordinates are specified in a line for a
tool, the message

"format error in DAT"

is issued at the run time.

Comments are permitted at the line end. These must
start with ';'. Complete comment lines are also per�
mitted. These too must start with ';'.

Blank lines are redundant.

The translations (these are the first three values) are
entered in [mm] and the rotations (the last three va�
lues) in [degrees].

Example for file
TOOL.DAT:
;-----------------------------------

;Tool name= G_X G_Y G_Z G_O1 G_O2 G_O3

;;----- IC grippers No. 10 and No. 11

IC_GRIPP_10 = 10 2.5 5 1 2 3

IC_GRIPP_11 = -20 0 120 5 0 6

;----- Bundle gripper No. 5

; front left

BUNDLE5_F_L = -50 -50 200 0 0 0

; front right

BUNDLE5_F_R = -50 50 200 0 0 0

; rear left

BUNDLE5_R_L = 50 -50 200 0 0 0

; rear right

BUNDLE5_R_R = 50 50 200 0 0 0

;----- Dummy gripper for switching off

OFF = 0 0 0 0 0 0
;-----------------------------------

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 157

22. 2. Tool selection in the movement program

A specific tool is selected in the BAPS program with
the instruction

TOOL kin1 grp_name

kin1 = Name of kinematic for which the tool is acti�
vated or default kinematic if no name is specified.

grp_name = Name of the tool (gripper) to be acti�
vated defined inTOOL.DAT.

EXAMPLE:

Let us assume that there are several bundle grippers
of the type as shown in program example 4.1 in a
magazine.

Let us assume here also that the individual grippers
of bundle gripper No. 5 are defined in the file
TOOL.DAT with the following names:

BUNDLE5_F_L,

BUNDLE5_F_R,

BUNDLE5_R_L,

BUNDLE5_R_R.

The rear left gripper of the bundle gripper No. 5 is
then selected for the kinematic SCARA_1 by

TOOL SCARA_1 BUNDLE5_R_L

i.e. the values of the tool coordinate system
BUNDLE5_R_L are included in the coordinate trans�
formation of SCARA_1.

A tool change is possible only in automatic mode.

A gripper remains active until the next call of TOOL.

The last-programmed tool remains active after the
program end.

In the event of program abort (e.g. emergency-stop
input, auto-manual change-over, reset etc.), the
tool active at the time of the abort remains active.

No tool is active after the control run-up, i.e.: G_X =
... = G_O3 = 0.

There is no direct instruction for switching off the
gripper or tool.

However, the desired effect can be realized simply by
programming a dummy gripper with the name 'OFF'
in TOOL.DAT and defining the corresponding coordi�
nates G_X= ... = G_O3 = 0 (see examples P. 4/6).
The BAPS instruction "TOOL OFF" then has the de�
sired effect.

In the case of Teach-in in the mode DEFINE/
TEACH-IN (Mode 4, Mode 2) or jog mode in Manual
mode (Mode 2), it is possible to select a specific tool

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 158

by means of the function key program which can be
realized via the PLC.

This may be done, for example, with the help of the
following program:

PROGRAM BUN5FL

BEGIN

 TOOL SCARA_1 BUNDLE5_F_L

PROGRAM_END

This instruction string results in internal conversion of
the TCP of SCARA_1 and thus of the world coordina�
tes. They now refer to the tip of the front left gripper
of bundle gripper No. 5.

This is done without a traversing movement, since
the joint coordinates have remained unchanged.

The following additional messages are output in the
event of an error at the runtime:

"TOOL.DAT missing"

"name of tool missing"

The name and coordinates of the currently active
tools (grippers) of the individual kinematics are dis�
played

under (Mode 7, Mode 1, 'Shift ->'),(Mode 2, 'Shift
->')

and (Mode 4, Mode 2, 'Shift ->').

C A U T I O N:

It must be ensured under all circum�
stances at the program start that the
correct tool is activated. Unexpected
movements may occur if programs are
executed with the wrong tools. The sa�
me effect can occur if a WC point in the
program is approached and taught-in
with different tools.

Bosch rho 3
rho 3
BAPS 2 Programming

Flexible Automation

 159

P309 is zero in the following program examples, i.e.
the origin of the tool coordinate system is located in
the flange.

Program example:

Effect of instruction string:

(1) The point CORNER_LEFT is approached by
SCARA_1 with the left front gripper.

 (3) The point CORNER_RIGHT is approached with
the right front gripper.

 (5) The point DEPOT is approached with the left
rear gripper.

(6) The Tool Center Point is now located in the
flange

0 TOOL SCARA_1 BUNDLE_F_L

1 MOVE SCARA_1 LINEAR CORNER_LEFT

2 TOOL SCARA_1 BUNDLE_F_R

3 MOVE SCARA_1 LINEAR CORNER_RIGHT

4 TOOL SCARA_1 BUNDLE_R_L

5 MOVE SCARA_1 LINEAR DEPOT

6 TOOL SCARA_1 OFF

Corresponding file TOOL.DAT

BUNDLE_F_L= -50 -50 200 0 0 0

BUNDLE_F_R= -50 50 200 0 0 0

BUNDLE_R_L= 50 -50 200 0 0 0

BUNDLE_R_R= 50 50 200 0 0 0

OFF = 0 0 0 0 0 0

Bundle gripper:

G_Y = 50

G_X = 50

G_Z = 200
Gripper
front
right

G_X

G_Y

G_Z

correspon�
ding coordi�
nate system

Bosch rho 3
Flexible Automation

rho 3
BAPS 2 Programming

 160

Program example:

(The action direction of the grippers is always verti�
cally downwards. Gripper No. 2 is rotated down�
wards in an uncontrolled manner by digital outputs.)

Effect of the instruction string:

(2) The point START_POS is approached by POR�
TAL_2 (default kinematic) with gripper 1.

Mechanical system switch-over so that gripper 2
faces down (e.g. by setting digital output signals).

(4) The point DEST_POS is approached with grip�
per 2.

(5) The Tool Center Point of PORTAL_2 is now lo�
cated in the flange.

(0) ;;KINEMATIC = PORTAL_2
(1) TOOL TURRET1_G1
(2) MOVE LINEAR START_POS
;Switch mechanical system so that gripper 2
;is pointing down (e.g. by setting digital
;output signals)

(3) TOOL TURRET1_G2
(4) MOVE LINEAR DEST_POS
(5) TOOL OFF.

Corresponding file TOOL.DAT

TURRET1_G1 = 0 0 100 0 0 0
TURRET1_G2 = 0 0 92 0 0 0
OFF = 0 0 0 0 0 0

G_Y = 0

G_X = 0

G_Y

G_Z

G_X

G_Z = 92

G_Z = 100

Gripper 1

Gripper 2

Turret gripper

Correspon�
ding coordi�
nate system

rho3
BAPS2Flexible Automation

BAPS2.0 KEY WORDS

161

23. B A P S 2 - K E Y W O R D S

All language symbols which are currently
reserved for BAPS2 are listed below. The
listed language symbols must not be
used as variable, file name or subroutine
name in a BAPS2 program.

'@' ;(* '@' *)
'SUBROUTINE' ;(* 'UP' *)
'UNTIL' ;(* 'BIS' *)
'REAL' ;(* 'DEZ' *)
'TIMES' ;(* 'MAL' *)
'WITH' ;(* 'MIT' *)
'MOD' ;(* 'MOD' *)
'PTP' ;(* 'PTP' *)
'AND' ;(* 'UND' *)
'REPEAT' ;(* 'WDH' *)
'THEN' ;(* 'DANN' *)
'END' ;(* 'ENDE' *)
'ARRAY' ;(* 'FELD' *)
'INTEGER' ;(* 'GANZ' *)
'HALT' ;(* 'HALT' *)
'READ' ;(* 'LESE' *)
'TO' ;(* 'NACH' *)
'OR' ;(* 'ODER' *)
'SYNC' ;(* 'SYNC' *)
'TEXT' ;(* 'TEXT' *)
'IF' ;(* 'WENN' *)
'VALUE' ;(* 'WERT' *)
'APPROX' ;(* 'CIRCA' *)
'FILE' ;(* 'DATEI' *)
'EXACT' ;(* 'EXAKT' *)
'MOVE' ;(* 'FAHRE' *)
'CIRCULAR' ;(* 'KREIS' *)
'NOT' ;(* 'NICHT' *)
'PAUSE' ;(* 'PAUSE' *)
'POINT' ;(* 'PUNKT' *)
'ELSE' ;(* 'SONST' *)
'VIA' ;(* 'UEBER' *)
'WAIT' ;(* 'WARTE' *)
'BINARY' ;(* 'BINAER' *)
'EXTERNAL' ;(* 'EXTERN' *)
'ERROR' ;(* 'FEHLER' *)
'LINEAR' ;(* 'LINEAR' *)
'JUMP' ;(* 'SPRUNG' *)
'OUTPUT' ;(* 'AUSGANG' *)
'INPUT' ;(* 'EINGANG' *)

rho3
BAPS2Flexible Automation

(Control type)

(Manual name)

BAPS2.0 KEY WORDS

162

'REF_PNT' ;(* 'REF_PKT' *)
'SPC_FCT' ;(* 'SPZ_FKT' *)
'RETURN' ;(* 'RSPRUNG' *)
'CHAR' ;(* 'ZEICHEN' *)
'PROGRAM' ;(* 'PROGRAMM' *)
'MAX_TIME' ;(* 'MAX_ZEIT' *)
'JC_POINT' ;(* 'MK_PUNKT' *)
'WRITE' ;(* 'SCHREIBE' *)
'SYNCHRON' ;(* 'SYNCHRON' *)
'REPEAT_END' ;(* 'WDH_ENDE' *)
'TOOL' ;(* 'WERKZEUG' *)
'LIMIT_OFF' ;(* 'GRENZE_AUS' *)
'MOVE_REL' ;(* 'VERSCHIEBE' *)
'READ_BEGIN' ;(* 'LESE_ANFANG' *)
'WRITE_BEGIN' ;(* 'SCHREIBE_ANF' *)
'WRITE_END' ;(* 'SCHREIBE_END' *)
'SYNCHRON_END' ;(* 'SYNCHRON_END' *)
'DEF' ;(* 'DEF' *)
'PROGR_SLOPE' ;(* 'PROGR_SLOPE' *)
'BLOCK_SLOPE' ;(* 'SATZ_SLOPE' *)
'WC_FRAME' ;(* 'RK_RAHMEN' *)
'BEGIN' ;(* 'ANFANG' *)
'START' ;(* 'START' *)
'PRIO' ;(* 'PRIO' *)
'PROGRAM_END' ;(* 'PROGRAMM_ENDE' *)
'SUB_END' ;(* 'UP_ENDE' *)
'PERMANENT' ;(* 'PERMANENT' *)
'ALSO' ;(* 'SOWIE' *)
'CLOSE' ;(* 'SCHLIESSE' *)
'PARALLEL' ;(* 'PARALLEL' *)
'PARALLEL_END' ;(* 'PARALLEL_END' *)
'EXCLUSIVE' ;(* 'EXKLUSIV' *)
'EXCLUSIVE_END' ;(* 'EXKLUSIV_END' *)
'STOP' ;(* 'STOP' *)
'SEMAPHORE' ;(* 'SEMAPHOR' *)
'BELT' ;(* 'BAND' *)
'RPT_END' ;(* 'WDH_ENDE' *)
'RPT' ;(* 'WDH' *)

rho3
BAPS2Flexible Automation

BAPS2.0 KEY WORDS

163

23. 1. B A P S - COMPILER STATEMENTS

'WARNING' ;(* 'WARNUNG' *)
'INT' ;(* 'INT' *)
'INCLUDE' ;(* 'EINFUEGE' *)
'JC_NAMES' ;(* 'ACHSNAMEN' *)
'WC_NAMES' ;(* 'KOORDINATEN' *)
'CONTROL' ;(* 'STEUERUNG' *)
'TOOL_COORD' ;(* 'WERK_KOORD' *)
'KINEMATICS' ;(* 'KINEMATIK' *)

;(* 'ANTRIEBSART' *)
'PROCESS_KIND' ;(* 'PROZESS_ART' *)
'DEBUGINFO' ;(* 'TESTINFO' *)

rho3
BAPS2Flexible Automation

(Control type)

(Manual name)

BAPS2.0 KEY WORDS

164

23. 2. B A P S - STANDARD VARIABLES

'V' ;(* 'V' *)
'VFIX' ;(* 'VFEST' *)
'T' ;(* 'T' *)
'TFIX' ;(* 'TFEST' *)
'A' ;(* 'A' *)
'AFIX' ;(* 'AFEST' *)
'V_PTP' ;(* 'V_PTP' *)
'VFIX_PTP' ;(* 'VFEST_PTP' *)
'VFACTOR' ;(* 'VFAKTOR' *)
'AFACTOR' ;(* 'AFAKTOR' *)
'LIMIT_MIN' ;(* 'GRENZE_MIN' *)
'LIMIT_MAX' ;(* 'GRENZE_MAX' *)
'TTY' ;(* 'TTY' *)
'MCP' ;(* 'HBG' *)
'V24_1' ;(* 'V24_1' *)
'V24_2' ;(* 'V24_2' *)
'PHG' ;(* 'PHG' *)
'POS' ;(* 'IPOS' *)
'@POS' ;(* '@IPOS' *)
'V24_3' ;(* 'V24_3' *)
'V24_4' ;(* 'V24_4' *)
'WC_SYSTEM' ;(* 'RK_SYSTEM' *)
'DFACTOR' ;(* 'DFAKTOR' *)
'@MPOS' ;(* '@MPOS' *)

rho3
BAPS2Flexible Automation

BAPS2.0 KEY WORDS

165

23. 3. B A P S - STANDARD FUNCTIONS

'WC' ;(* 'RK' *)
'JC' ;(* 'MK' *)
'SIN' ;(* 'SIN' *)
'COS' ;(* 'COS' *)
'ATAN' ;(* 'ATAN' *)
'SQRT' ;(* 'WURZEL' *)
'END_OF_FILE' ;(* 'DATEI_ENDE' *)
'ABS' ;(* 'ABS' *)
'ROUND' ;(* 'RUNDUNG' *)
'TRUNC' ;(* 'GANZTEIL' *)
'WC_COMPUTATION' ;(* 'RK_RECHNUNG' *)
'ORD' ;(* 'ORD' *)
'CHR' ;(* 'CHR' *)
'INT_ASC' ;(* 'GANZ_ZFELD' *)
'ASC_INT' ;(* 'ZFELD_GANZ' *)

rho3
BAPS2Flexible Automation

(Control type)

(Manual name)

BAPS2.0 KEY WORDS

166

23. 4. B A P S - STANDARD CONSTANTS

'WC_UR' ;(* 'RK_UR' *)

A
A, 45

Abort conditions, 47

Actual position POS, 87

AFACTOR, 33, 36, 45

AFIX, 36

Analog In/-Outputs, 100

Analog input, value range, 102

Analog output
value range, 106
voltage offset, 105

Arithmetic operations
+, 76
-, 76
*, 76
/, 76
MOD, 76

ARRAY, 73

Array declaration, 90

Array variables, 91

Axis limit values, 50

B
BAPS2, 1

BEGIN, 158

Belt channels, 97

Belt synchronization, 38

BINARY, 63

C
Channel number, 96

CIRCULAR, 34, 145

Comparison operation
, 93
=, 93
<, 93
<=, 93
>, 93
>=, 93

Compiler, 2

Compiler statement
CONTROL, 145
INCLUDE, 145, 149
INT, 145
JC_NAMES, 145
KINEMATICS, 145
PROCESS_KIND, 145, 150
TESTINFO, 151
WC_NAMES, 145

Component-by-component assignment,
 88

Compound statements
BEGIN, 141
END, 141

Control value, 114

D
DAT-file, 133

Data types
BINARY, 70
CHAR, 71
INTEGER, 70
JC_POINT, 72
POINT, 72
REAL, 70
TEXT, 73

Declaration part, 5

DEF, 74

Device, 124

DFACTOR, 36, 46

E
ELSE, 63

END_OF_FILE, 82

EXCLUSIVE, 73, 144

EXCLUSIVE_END, 144

EXTERNAL, 9

External main program, 8

F
FILE, 73, 135

File
ERR, 2
IRD, 2
PKT, 2
QLL, 4
SYM, 2

File operation
CLOSE, 133, 139
END_OF_FILE, 133, 137
READ, 133
READ_BEGIN, 133, 136
WRITE, 133, 137
WRITE_BEGIN, 133, 138
WRITE_END, 133, 139

Flange, 153

Function number, 113

Function variables, 116

G
Gripper, 153

H
HALT, 59

I
IF, 63

INCLUDE, 123

INPUT, 96

Interface, 124
Error messages, 130
PHG, 126
Transferred data, 127, 130
V24_1, 126
V24_2, 126
V24_3, 126
V24_4, 126

Interpolation mode
CIRCULAR, 25
LINEAR, 24
PTP, 25

IQ140, 145

J
JUMP, 61

K
Kinematic definition, 23

Kinematics, 72

L
LIMIT_MAX, 148

LIMIT_MIN, 148

LIMIT_OFF, 148

LINEAR, 34, 145

Logic operation
AND, 95
NOT, 95
OR, 95

M
Main program structure, 5

MAX_TIME, 56

Modulo function, 77

MOVE
TO, 19
VIA, 19

MOVE VIA TO, 19

MOVE WITH, 45

Move_REL
APPROX, 20
EXACT, 21

Movement instructions
MOVE, 18
MOVE_REL, 20
REF_PNT, 22

Movement statements, 17

N
Nominal value, 102

O
Orientation, 154

OUTPUT, 96

P
Parallel processes

EXTERN, 142
START, 142
STOP, 143

PARALLEL_END, 143

PAUSE, 58

PERMANENT, 145, 150

Point file PNT, 84

Point variables, 83

PPO, 116

Process parameter, 114

PROGRAM, 158

Program declaration, 7

Program structuring, 4

PROGRAM_END, 158

Protocol, 125

PTP, 145

R
Rate time, 114

READ, 129, 135

REF_PNT, 148

Repetitions, 15

RHO3, 145

ROPS3/IQPRO, 2

RPT, 60

RPT_END, 60

S
SEMAPHORE, 73

Semaphores, 144

Slope
BLOCK_SLOPE, 41
machine parameters, 51
PROGR_SLOPE, 41

SPC_FCT
1=exact-position switching of digital out�

puts, 111
2=exact-position switching of decimal out�

puts, 112
23=System date and time, 122
24=System counter, 122
27=WC main area, 123

Special function
calling, 109
declaration, 109
Error messages, 118, 121
output, 119
preventing process parameter output, 120

Speed
V, 30

V_PTP, 29

Standard function
ABS, 80
ATAN, 79
CHR, 81
COS, 78
JC, 80
ORD, 81
ROUND, 81
SIN, 78
SQRT, 79
TRUNC, 80
WC, 80

Statement part, 6

Subroutine
call, 12
declaration, 11
identification, 11
nesting, 14

SYNC, 39

SYNCHRON, 40

SYNCHRON_END, 40

T
Text assignment, 89

THEN, 63

TIMES, 60

TOOL, 148, 153, 157

Tool Center Point, 153

Tool change, 153

TOOL.DAT, 153, 155

Turret gripper, 160

V
V, 45

Value assignment, 75, 85

Variable declaration, 68

VFACTOR, 32, 45

W
WAIT, 53

WAIT UNTIL, 39, 54

WITH, 35

Bosch-Automationstechnik

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Industriehydraulik
Postfach 30 02 40
D-70442 Stuttgart
Telefax (07 11) 8 11-18 57

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Fahrzeughydraulik
Postfach 30 02 40
D-70442 Stuttgart
Telefax (07 11) 8 11-17 98

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Pneumatik
Postfach 30 02 40
D-70442 Stuttgart
Telefax (07 11) 8 11-89 17

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Montagetechnik
Postfach 30 02 07
D-70442 Stuttgart
Telefax (07 11) 8 11-77 12

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Antriebs- und Steuerungstechnik
Postfach 11 62
D-64701 Erbach
Telefax (0 60 62) 78-4 28

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Schraub- und Einpreßsysteme
Postfach 11 61
D-71534 Murrhardt
Telefax (0 71 92) 22-1 81

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Entgrattechnik
Postfach 30 02 07
D-70442 Stuttgart
Telefax (07 11) 8 11-34 75

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Antriebs- und Steuerungstechnik
Postfach 11 62
D-64701 Erbach
Telefax (0 60 62) 78-4 28

Ihr Ansprechpartner

Technische Änderungen vorbehalten

1070 073 033-101 (92.06) GB · HB RC · AT/VSP · Printed in Germany

	Contents
	1. BAPS2 Programming Instructions
	2. Program structuring
	3. Movement statements
	4. Program flow statements
	5. Variable declaration
	6. Value assignment
	7. Arithmetic expressions
	8. Standard functions
	9. Point variables
	10. Text variable
	11. Arrays
	12. Comparison
	13. Logic operations
	14. Channels
	15. Analog inputs/outputs
	16. Special functions
	17. Communication functions
	18. File operations
	19. Compound statements
	20. Parallel processes
	21. Compiler statements
	22. Tool change
	23. B A P S 2 - K E Y W O R D S

